

IDS Report

GGOS Bureau for Networks and Observations New-Orleans, 14 December 2017

D opplerO rbitography

and R adiopositioning

ntegrated

S atellite

Prepared by JEROME SAUNIER, IGN (IDS representative to GGOS-BNO)

by

NETWORK STATUS

45 CO-LOCATIONS OUT OF 57 DORIS SITES

GGOS Bureau of Networks and Observations, New-Orleans, 14 December 2017

NETWORK STATUS

RELIABLE SERVICE OF THE PERMANENT TRACKING STATIONS

COVERAGE GAP IN SOUTH PACIFIC (3 STATIONS OUT OF ORDER)

Network availability 2017

NETWORK EVOLUTION

RECENT NETWORK EVENTS

- Aug. 2017: beacon replacement at Tristan da Cunha, South Atlantic, UK
- Nov. 2017: antenna verticality adjustment at Sal Island (Cape Verde)

• SHORT TERM (2018):

- San Juan, AR: new station installing in place of Santiago (3 techniques site)
- Rothera, Antarctic: relocating 100m away (site refurbishment)
- Guam, US: new station to near IGS station, GUUG
- Ny-Ålesund, Spitzberg, Norway: relocating (new 4 techniques site)
- Easter Island, Chile: relocating (hosting migration)

LONGER TERM:

- Katherine, AS: new station installing in place of Port-Moresby (3 techniques site)
- Changchun, CN: new station installing in place of Sakhalinsk (3 techniques site)
- Reykjavik, IS: relocating to improve performance
- Papenoo, Tahiti, FR: new 4 techniques site

■ 4TH GENERATION DORIS GROUND BEACON

 Prototype will be undergoing testing from next January. Delivery of the first batch of beacons planned in March 2019.

MEASURE LIMITATIONS

DORIS SYSTEM NOISE ESTIMATED AT A LEVEL OF 0,3MM/S

- Instrumental modeling accuracy
- Dynamic models accuracy

GROUND ANTENNA CHARACTERIZATION

- 2013-2014: major work to characterize the ground antenna and initialize an error budget
- Tourain, C., Moreaux, G., Auriol, A., Saunier, J., 2016. "DORIS Starec ground antenna characterization and impact on positioning". Adv. Space Res. 58 (12), 2707–2716. <u>http://dx.doi.org/10.1016/j.asr.2016.05.013</u>
- Saunier, J., Tourain, C., Auriol, A., 2016. « Initiating an error budget of the DORIS ground antenna position – genesis of the Starec antenna type C » Adv. Space. Res. 58 (12), 2717– 2724. <u>http://dx.doi.org/10.1016/j.asr.2016.02.013</u>

STANDARDIZING INSTALLATIONS AND EQUIPMENT

- System requirements for a DORIS station (since 2007)
- Monument stability steadily improved (since 2000)
- Saunier, J., 2016. "Assessment of the DORIS network monumentation" Adv. Space Res. 58 (12), 2725–2741. <u>http://dx.doi.org/10.1016/j.asr.2016.02.026</u>

ERROR SOURCES IN POSITIONING

DORIS

2GHz

phase center

Antenna

Reference Point

6/7

MAIN DIFFICULTY: define the electronic reference point (2GHz) with respect to the conventional reference point (ARP)

MANUFACTURING

- 1. Variability of the 2GHz phase center position w.r.t. antenna flange => vertical error
- 2. Centering of the 2GHz phase center w.r.t. radome => horizontal error
- 3. Alignment ARP/AMP w.r.t. antenna axis => horizontal error
- 4. Perpendicularity of the antenna flange w.r.t. antenna axis => cured by installation

SURVEY

- 1. Antenna verticality adjustment => horizontal error
- 2. Local tie survey (ARP positioning) => horizontal and vertical error

ERROR BUDGET

The work with the manufacturer helped to consolidate the antenna specifications and draw up an error budget:

Error Type	Error Source	Direction	Error Value	
Manufacturing	2GHz PC centering / radome	Horizontal	±1 mm	+ 2 mm
Manufacturing	Alignment ARP/AMP / axis	Horizontal	±1 mm	± 2 11111
Manufacturing	2GHz PC position / flange	Vertical	±1 mm	± 3 mm
Characterization	2GHz PC position and associated phase law	Vertical	±2 mm	
Survey	Verticality adjustment	Horizontal	±1 mm	en h a)mm
Sur ve y	rror budget is relating to antenna Starec type Local tie survey	C (current D Horizontal	ORIS ante mm	
Survey	Local tie survey	Vertical	± 1	± 1 mm

12 STAREC TYPE C:

- ADHC, GONC, JIWC, KEVC, KIVC, MNAC, OWFC, PDOC, ROWC, SARC, SOFC, WEUC
- No systematic deployment but replacements are performed after any maintenance operation
- 2 mm uncertainty in the horizontal plane; 2.5 mm for the vertical component

45 STAREC TYPE B:

- Before September 2014
- Standard uncertainty of the 2GHz phase center in the vertical direction is 5 mm (vs. 1 mm)

LOCAL TIE SURVEY ACCURACY

ESTIMATED UNCERTAINTIES FOR EACH DORIS CO-LOCATED SITE

- Taking into account: the local tie survey method; the monument stability: the distance between instruments; the completion date
- File available on <u>ftp://ftp.ids-doris.org/pub/ids/stations/DORIS_ext_ties.txt</u>

RECENT PUBLICATION (IERS TECHNICAL NOTE):

- "IGN best practice for surveying instrument reference points at ITRF co-location sites" Jean-Claude Poyard, with contributions by Xavier Collilieux, Jean-Michael Muller, Bruno Garayt and Jérôme Saunier 2017 (IERS Technical Note No. 39)
- Available on line:<u>https://www.iers.org/IERS/EN/Publications/TechnicalNotes/TechnicalNotes.ht</u> <u>ml</u>

IDS NEWS

IDS COMMUNICATION

- IDS website redesign (including web-services): <u>http://ids-doris.org</u>
- IDS Activity Report 2016 available online
- IDS Newsletter #4 available online

IDS RETREAT

- Currently under preparation for 2018
- Define goals and objectives: Plan for the next 5-10 years

NEXT IDS MEETINGS

- IDS AWG in Toulouse in May 2018
- IDS Workshop in Ponta Delgada, Azores (Portugal) during the symposium "25 years of Progress in Radar Altimetry" 24-29 September 2018

