OSTST, 28-31 October 2014

Precise Orbit Determination by CNES/CLS (LCA) IDS Analysis Center in the framework of ITRF2013

H. Capdeville (1), L. Soudarin (1), J.-M. Lemoine (2), P. Schaeffer (1) 1 CLS, Collecte Localisation Satellites, Ramonville, France 2 CNES, Toulouse, France

OSTST, 28-31 October 2014, Konstanz

We took the IERS conventions and the IDS recommendations

Gravitational forces:

Geopotential: EIGEN-6S2.v2.extended (with trend terms) Ocean tides: FES2012 De-aliasing products coherent with the gravity filed Third body: JPL DE421 (IERS conventions 2010)

Non gravitational forces:

Atmospheric drag: DTM 2012

Geometry:

Troposphere: GPT2/VMF1 + one gradient per station in North & East directions Ocean loading: FES2012

Others:

The phase law for STAREC and ALCATEL antennas given by CNES has been implemented in GINS and has been used for our ITRF processing For Cryosat-2, we applied the CNES 7-plate macromodel

ITRF2013 REPROCESSING

Available DORIS data have been processed from 1993/01 to 2013/12 to contribute to the realization of the ITRF2013

We consider here only the DORIS satellites used for altimetry

Software

We used GINS/DYNAMO software (GRGS) and CNES computer ressources

DORIS data processed

•For all missions the elevation cut off is 12°, and a downweighting law is applied for elevations <= 20°

•For Jason-1 :	Satellites	Period	
-Data are corrected by SAA model	Торех	Jan. 04, 1993 to Oct. 29, 2004	
-downweighting SAA stations in POD	Jason-1	Jan. 01, 2002 to Jun.14, 2013	
	Envisat	Jul. 23, 2002 to Apr. 04, 2012	
•We do not use the SARAL DATA	Jason-2	Jul. 14, 2008 to Dec. 27, 2013	
	Cryosat-2	Jun. 16, 2010 to Dec. 27, 2013	
	Hy2a	Oct. 02, 2011 to Dec. 27, 2013	

ITRF2013 REPROCESSING STATUS

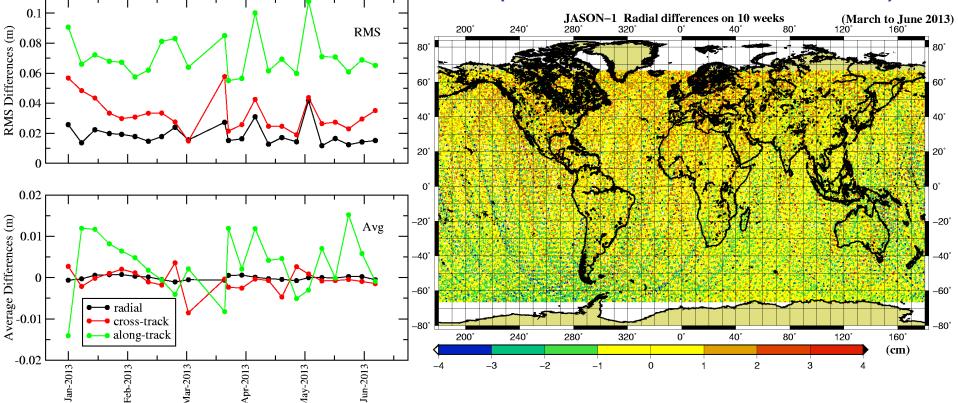
DORIS and SLR Orbit Residuals OPR Acceleration Amplitude: Along-track and Cross-track Radiation pressure coefficient Cr

Satellites	DORIS RMS (mm/s)	SLR RMS (cm)	Average Along-track OPR (nm/s ²)	Average Cross-track OPR (nm/s ²)	Cr
Торех	0.45	1.4	1.7	1.2	1.03
Jason-1	0.31	1.2	1.9	1.1	0.94
Envisat	0.39	0.97	1.1	1.1	1.05
Jason-2	0.31	1.2	2.6	1.5	0.97
Cryosat-2	0.34	0.94	3.3	2.3	1.0
Hy2a	0.33	1.15	0.48	1.77	0.86
Saral	0.33	0.93	1.29	1.24	1.0

Good level for DORIS and SLR orbit residuals Average OPR Acceleration amplitudes are < 4 nm/s²

Remark: since our ITR2013 contribution we have processed SARAL DATA

POD CONFIGURATION	LCA Analysis Center	CNES GDR-D
Arc length Ddata processed	3.5 days DORIS +SLR	10 days or 7 days DORIS + SLR and +GPS (for satellites with GPS receiver onboard)
Gravity model	EIGEN-6S2.v2.extended up to degree 95 including time variable terms up to degree 50 (bias & drift per yr from 2002 to 2012, periodic 18.6, 1, 0.5yrs) Solid Earth Tides: from IERS2010 Ocean tides FES2012 Atmospheric gravity : 3hr ERA-interim / ECMWF up to degree 50 Non tidal oceanic gravity: TUGO R12 up to degree 50	EIGEN-RGS_RL02bis_MEAN-FIELD(2011) Non-tidal TVG : Annual, Semi-annual, and drifts up to deg/ord 50 Solid Earth Tides: from IERS2003 Ocean tides FES2004 Atmospheric gravity : 6hr NCEP pressure fields + tides from Biancale-Bode model
Sufaces Forces	Radiation Pressure model: tuned for Jason-2Earth Radiation : Albedo and IR pressure values interpolated from ECMWF 6hr grids	Radiation Pressure model: the same except for Jason-2 Earth Radiation : Knocke-Ries albedo and IR satellite model
Satellite reference	Attitude Model : nominal attitude law for all satellites	Attitude Model : nominal attitude law except for Jason-1 and Jason-2 : Quaternions
Displacement of reference points	Earth tides: IERS2010 conventions Ocean Loading: FES2012	Earth tides: IERS2003 conventions Ocean Loading: FES2004

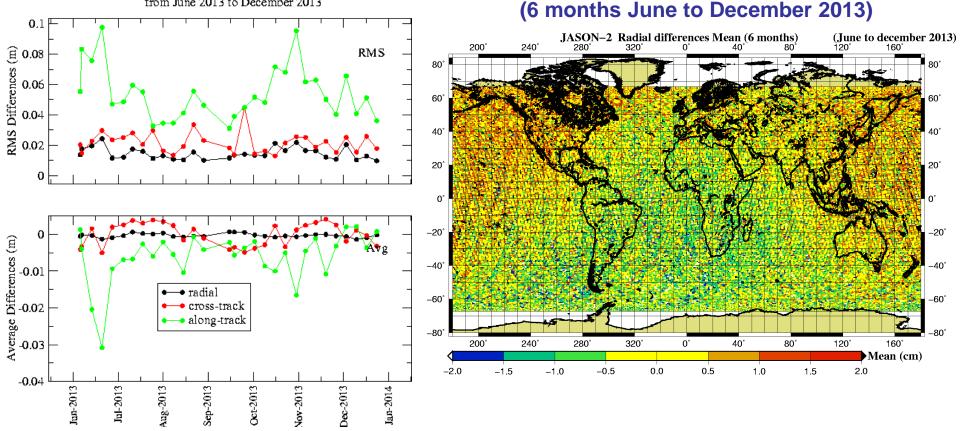

Jason-1 Orbit Comparison LCA vs CNES GDR-D POE

Radial/Cross-track /Along-track Orbit differences

Jason1 Rad/Crs/Alg Orbit Differences for LCA vs CNES_POD from January 2013 to June 2013

Orbit geodetic period

Radial orbit differences (on 10 weeks from March to June 2013)

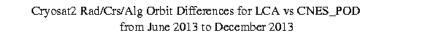


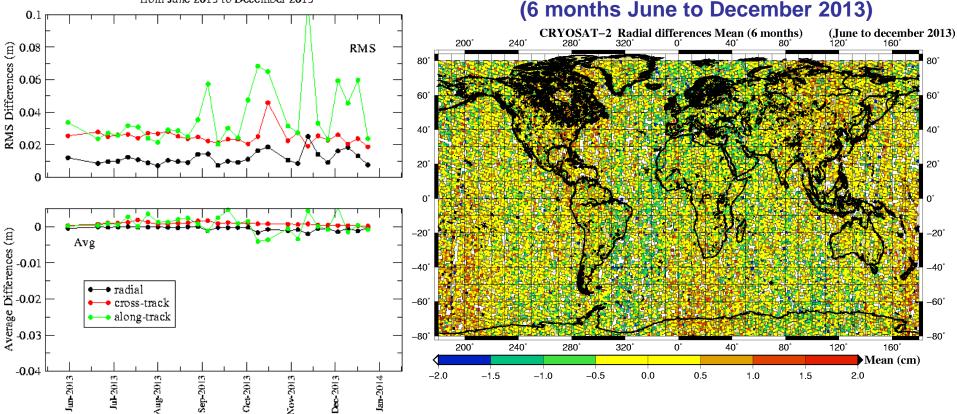
Good agreement between LCA orbits and CNES GDR-D POE (in particular radial) No clear Radial geographical systematic differences (slightly N/S)

Jason-2 Orbit Comparison LCA vs CNES POE

Radial/Cross-track /Along-track Orbit differences

Jason-2 Rad/Crs/Alg Orbit Differences for LCA vs CNES_POD from June 2013 to December 2013

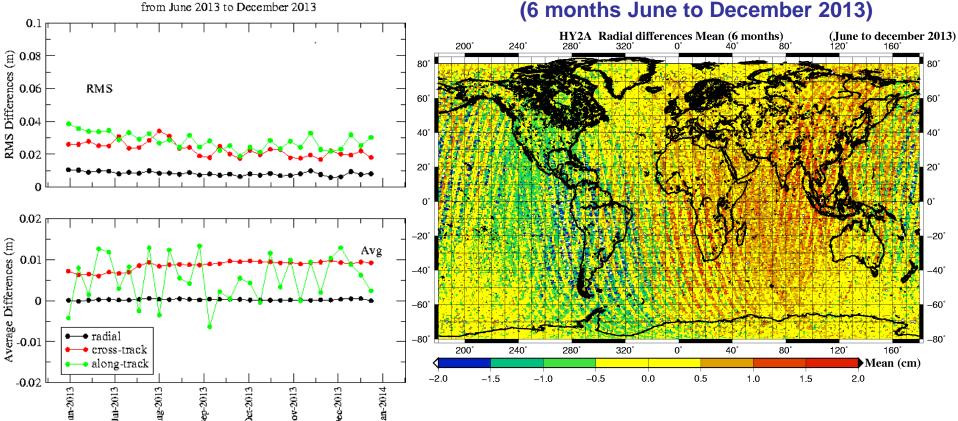



Radial orbit differences Mean

Good agreement between LCA orbits and CNES GDR-D POE (in particular radial) Radial geographical systematic differences: south Atlantic patch (N/S)

Cryosat-2 Orbit Comparison LCA vs CNES GDR-D POE

Radial/Cross-track /Along-track Orbit differences


Radial orbit differences Mean

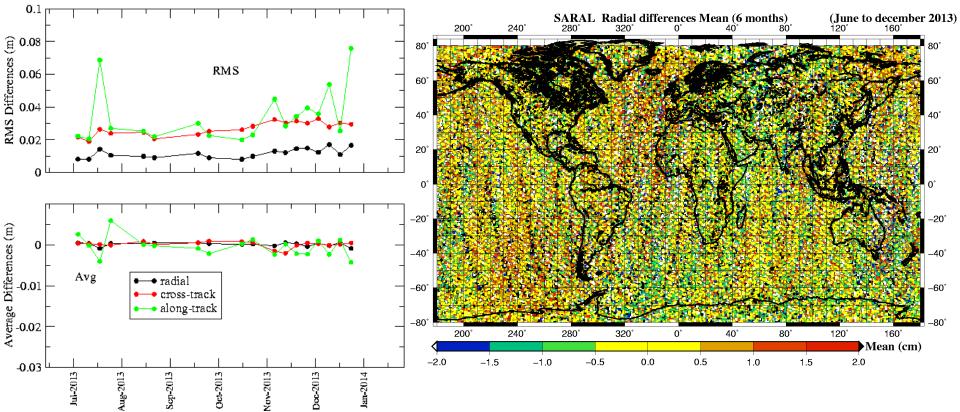
Good agreement between LCA orbits and CNES GDR-D POE (in particular radial) No clear radial geographical systematic differences

Hy2a Orbit Comparison LCA vs CNES GDR-D POE

Radial/Cross-track /Along-track Orbit differences

Hy2a Rad/Crs/Alg Orbit Differences for LCA vs CNES_POD from June 2013 to December 2013

Radial orbit differences Mean


Good agreement between LCA orbits and CNES GDR-D POE (in particular radial) **Radial geographical systematic differences: East/West patches**

Since the ITRF2013 contribution we processed first SARAL orbits Saral Orbit Comparison LCA vs CNES GDR-D POE

Radial/Cross-track /Along-track Orbit differences

Saral Rad/Crs/Alg Orbit Differences for LCA vs CNES_POD from June 2013 to December 2013

Radial orbit differences Mean (6 months June to December 2013)

Good agreement between LCA orbits and CNES GDR-D POE (in particular radial) No clear radial geographical systematic differences

CONCLUSION AND PERSPECTIVE

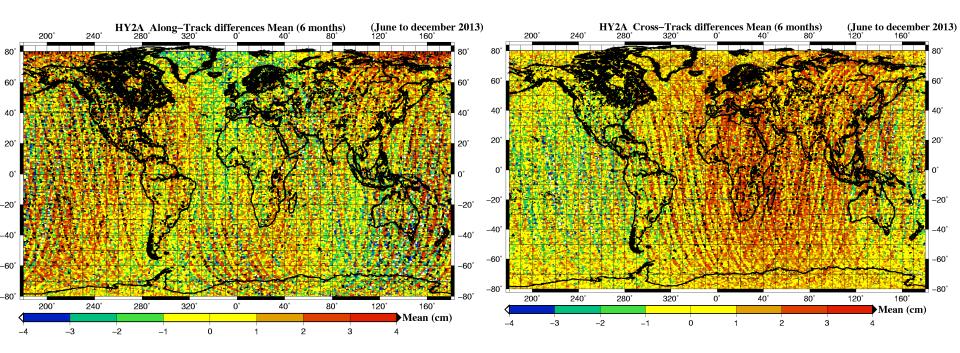
Conclusion Good agreement between LCA orbits and CNES GDR-D POE (in particular radial)

In the framework of the ITRF2013 we have reprocessed in homogeneous context all DORIS data available from 1993/01 to 2013/12 (in particular: Topex / Envisat / Jason-1 / Jason-2 / Cryosat-2 / Hy-2a + Saral)

LCA Orbits in sp3 format are available on the DATA Center (CDDIS and IGN) ftp://cddis.gsfc.nasa.gov/pub/doris/products/orbits/lca/

Perspective Routine Delivery in the same processing context Exploitation of the ITRF reprocessing to improve models (solar pressure models, ...)

BACK SLIDES


OSTST, 28-31 October 2014, Konstanz

ITRF2013 REPROCESSING STATUS

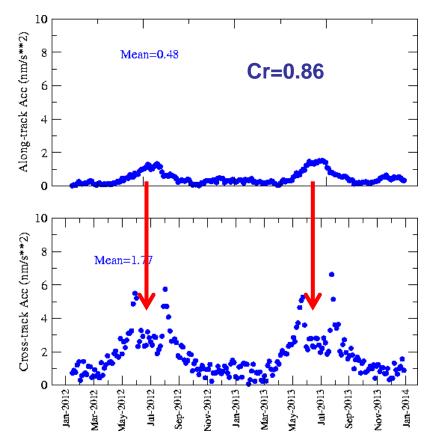
HY-2A Orbit Comparison LCA vs CNES GDR-D POE

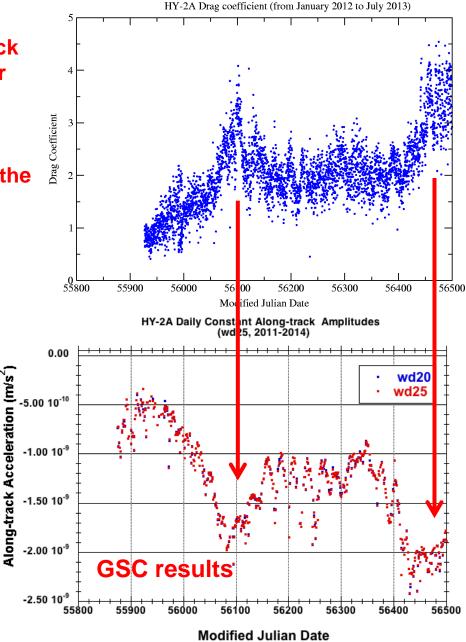
Along-track orbit differences Mean (6 months June to December 2013)

Cross-track orbit differences Mean (6 months June to December 2013)

Cross-track geographical systematic differences East/West patches

OSTST, 28-31 October 2014, Konstanz


ITRF2013 REPROCESSING STATUS


HY-2A drag coefficient

-we note a correlation with the daily Along-track constant acceleration adjusted by GSC in their processing

- for LCA this daily Along-track bias is mainly absorbed by drag coefficient

-when GSC along-track acceleration is higher the OPR amplitudes increase

