
Geophysical Research Abstracts, Vol. 10, EGU2008-A-12065, 2008, G4-IMO5P-0348 (combination) (analysis coordinator) Contact:

### ABSTRACT



| AC        |
|-----------|
| IGN       |
| LEGOS/    |
| INASAN    |
| PECNY     |
| Geosc. A  |
| 1. Loose  |
| 2. IGN, L |
| satellite |
| 3. INA al |



Four AC's provide very consistent solutions based on three independent software packages, two of them are operational with routine production Weighted RMS of the combinations are between 10 to 15 mm with the for AC solutions. More info at

#### To be investigated and understood

Systematic effects remain in the TRF parameters such as large TZ yearly signal or 1-3 cm TY bias, Some behaviour is puzzling (INA scale jump at end of 2005). Solutions from AUS are at a lower level than other AC's (not plotted here). AUS is now reprocessing Jason-1, analyzing SPOT-4 data and performing intercomparisons with the other GEODYN analysis center (GSFC).

# **Progress towards a DORIS combination for the next ITRF**

F. G. Lemoine, D. Chinn, Planetary Geodynamics Laboratory, NASA GSFC Greenbelt, Maryland 20771 USA J.J. Valette, L. Soudarin, P. Yaya CLS, 8-10 rue Hermès, Parc Technologique du Canal, 31520 Ramonville Saint-Agne, France P. Willis, M-L. Gobinddass, IGN/IPGP, Etudes Spatiales et Planétologie 4, place Jussieu, Paris 75252 Cedex 5, France P. Stepanek, Geodetic Observatory Pecny, Ondrejov 244, 25165 Prague-East, Czech Republic S. Kuzin, Institute of Astronomy, Russian Academy of Sciences (INASAN), 119017, Moscow, Russia K. Le Bail, LAREG/IGN, 6-8 Avenue Blaise Pascal, 77455 Champs-sur-Marne, France R. Govind, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia



### **COMBINATION DATASET**

(since ITRF2005) software solution

ign (wd05) S/CLS Ica (wd18) ina (wd03) gop (wd03) Aus aus (wd02)

**GIPSY/OASIS GINS/DYNAMO GIPSY/OASIS** BERNESE GEODYN

ely constrained with var-cov and EOPs. LCA & GOP processed the ENVISAT and SPOT(2,4,5) data.

Iso processed the Jason-1 satellite data. 4. Geosc. Aus. processed SPOT(2,5), Jason-1 & ENVISAT. **CATREF** software

IGN CATREF combination software uses the similarity transformation and associated equation:

$$\begin{cases} X_s^i = X_c^i + (t_s^i - t_0)\dot{X}_c^i + T_k + (t_s^i - t_k)\dot{X}_c^i + T_k + \dot{D}_k X_c^i + \dot$$

where for each individual frame k,  $D_k$  is the scale factor,  $T_k$  the translation vector and  $R_k$  rotation matrix. The dotted parameters designate their derivatives with respect to time (Altamimi and Boucher, 2003).

WRMS = 14.2 mm

WRMS = 10.4 mm

WRMS = 38.7 mm

For comparison, the collocated THU2 (GPS) station (using data from 3.5 years or 2004 through mid 2007) yields velocities of 4.59 ± 0.11 mm/yr (north), (east) and  $9.40 \pm 0.40$  mm/yr (up)¶. So the geodetic velocities at Thule from DORIS and GPS are in agreement and both show an uplift of about 8-9 mm/yr. ¶ GPS comparison solution from

NASA/JPL, courtesy of M. Heflin, 2007.9.

EGU 2008, Vienna, Austria. EGU2008-A-12065, G4-IM05P-0348, XY0348

 $D_k X_c^i + R_k X_c^i$  $\dot{R}_k X_c^i$ 



#### Validation step (per AC Individual cumulative combination)

Main objectives are a) the estimation of internal consistency and the detection of discrepancies of the solutions, b) SINEX cleaning.

The validation includes projection using inner-constraints, cumulative combination with inner-constraints on translation, scale and rotation (no datum used). At each iteration, stations with high residuals are rejected.

#### Weekly combination step

A 7 parameter transformation is then calculated every week using an IDS ITRF2005 datum - sub-network with best  $\sigma$  on position (< 1 cm) and velocity (< 2 mm/yr) with common stations to the week to process -. The solutions are weighted with variance factor of each combination.

#### **ENVISAT: RMS**

|                 | E                                   | ENVISAT |           |        |
|-----------------|-------------------------------------|---------|-----------|--------|
| Orbit Set       | Orbit Set Npts RMS Orbit Difference |         |           |        |
|                 |                                     | Radial  | Cross-tr. | Along- |
|                 |                                     |         |           | tr.    |
| ESOC vs IGN     | 299                                 | 1.5     | 3.2       | 5.4    |
| IGN vs GSFC     | 295                                 | 1.7     | 4.2       | 6.3    |
| IGN vs INA      | 294                                 | 1.3     | 4.8       | 11.6   |
| INA vs GSFC     | 292                                 | 2.0     | 6.0       | 13.0   |
| ESOC vs INA     | 292                                 | 1.6     | 4.5       | 12.6   |
| ESOC vs<br>GSFC | 347                                 | 1.3     | 3.6       | 4.8    |
| AUS vs<br>GSFC  | 42                                  | 1.0     | 9.2       | 8.3    |
| ESOC vs<br>GOP  | 29                                  | 1.8     | 4.7       | 9.8    |
| GOP vs<br>GSFC  | 28                                  | 2.4     | 5.0       | 11.7   |
| GOP vs IGN      | 30                                  | 2.1     | 4.7       | 11.8   |
| IGN vs LCA      | 284                                 | 5.4     | 7.2       | 14.6   |
| IGN vs LCA2     | 273                                 | 2.1     | 6.0       | 6.2    |
| GSFC vs<br>LCA  | 227                                 | 5.6     | 7.3       | 15.4   |
| GSFC vs<br>LCA2 | 103                                 | 2.3     | 7.4       | 6.1    |
| INA vs LCA      | 274                                 | 5.8     | 7.1       | 14.7   |
| ESOC vs<br>LCA  | 732                                 | 5.5     | 6.5       | 15.3   |
| ESOC vs<br>LCA2 | 320                                 | 1.9     | 5.9       | 4.6    |

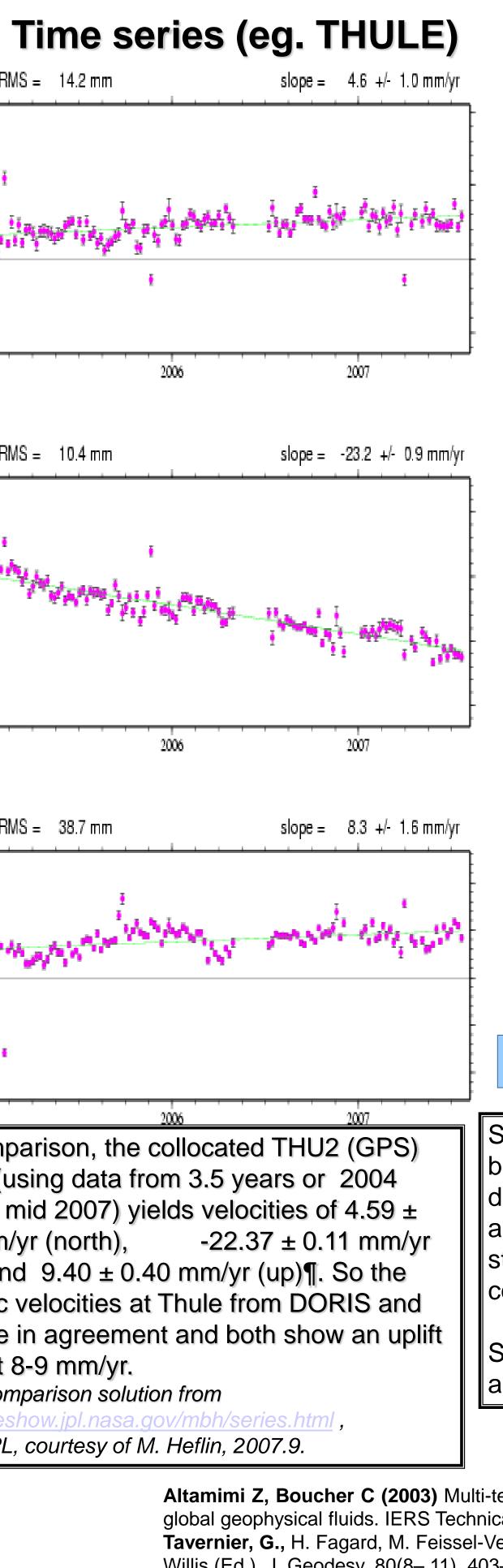
## **ENVISAT: Mean**

|             | ]    | ENVISAT   |               |     |
|-------------|------|-----------|---------------|-----|
| Orbit Set   | Npts | Average C | Orbit Differe | nce |
|             |      | Radial    | Cross-tr.     | 4   |
|             |      |           |               |     |
| ESOC vs IGN | 299  | 0.1       | -0.1          |     |
| IGN vs GSFC | 295  | -0.2      | -0.8          |     |
| IGN vs INA  | 294  | -0.5      | -0.3          |     |
| IGN vs LCA  | 284  | -0.2      | -1.0          |     |
| IGN vs LCA2 | 273  | -0.5      | -2.3          |     |
| LCA vs GSFC | 227  | -0.4      | -1.9          |     |
| LCA2 vs     | 103  | -0.7      | -3.2          |     |
| GSFC        |      |           |               |     |
| INA vs LCA  | 274  | 0.3       | -0.6          |     |
| ESOC vs LCA | 732  | -0.2      | -0.9          |     |
| ESOC vs     | 320  | -0.5      | -2.3          |     |
| LCA2        |      |           |               |     |
| INA vs GSFC | 292  | -0.7      | -1.2          |     |
| ESOC vs INA | 292  | 0.6       | 0.2           |     |
| ESOC vs     | 347  | -0.1      | -0.9          |     |
| GSFC        |      |           |               |     |
| AUS vs GSFC | 42   | 0         | 0             |     |
| ESOC vs GOP | 29   | 0.5       | 0.1           |     |
| GOP vs GSFC | 28   | -0.7      | -1.2          |     |
| GOP vs IGN  | 30   | 0.4       | 0.3           |     |

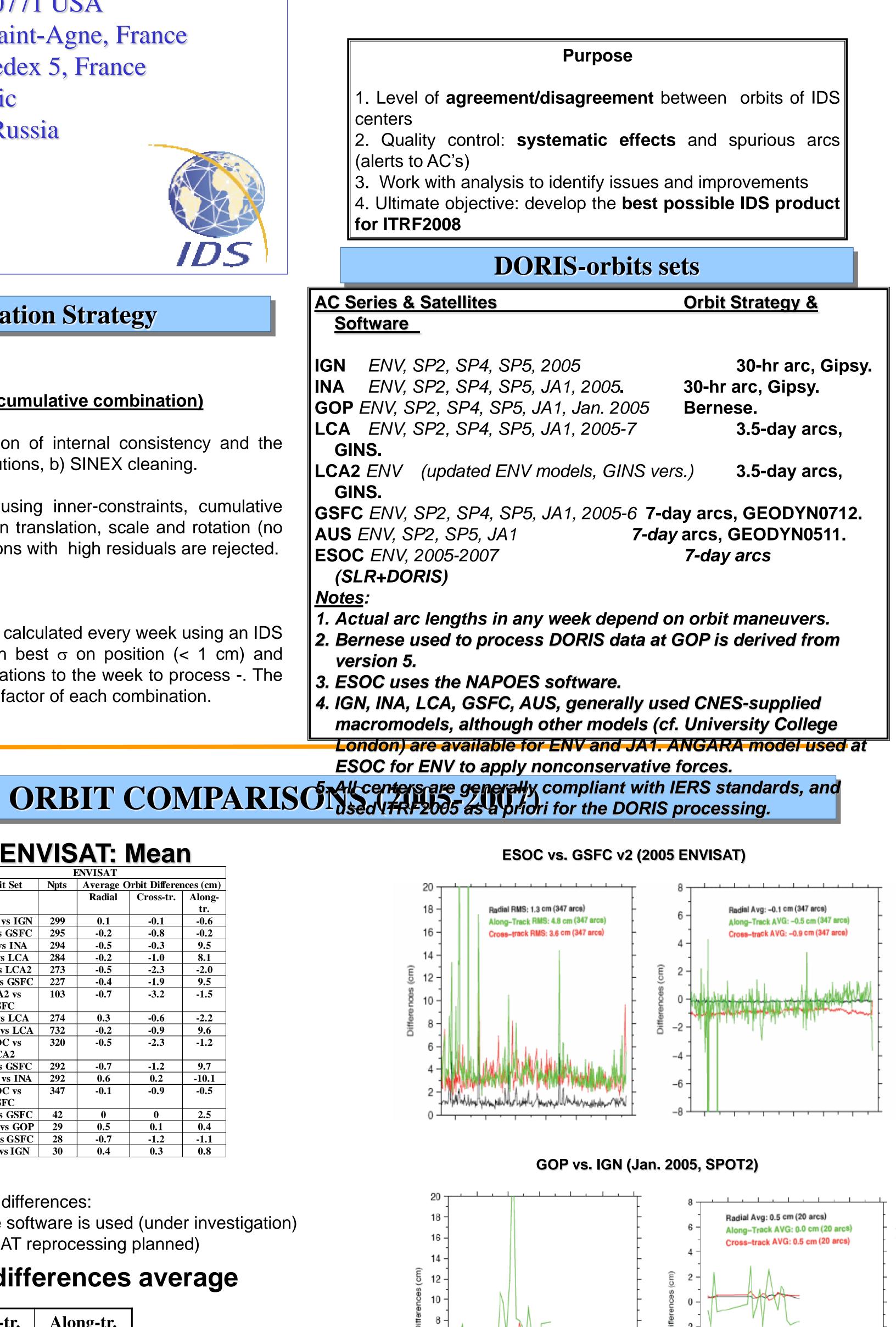
notable differences: IGN-INA & AUS/GSFC while same software is used (under investigation) also with LCA (ENVISAT reprocessing planned)

### Per satellite RMS orbit differences average

| Satellite | Radial | Cross-tr. | Along-tr. |  |
|-----------|--------|-----------|-----------|--|
| ENVISAT   | 1.8    | 4.6       | 8.6       |  |
| (w. LCA2) |        |           |           |  |
| SPOT2     | 1.6    | 5.0       | 8.5       |  |
| SPOT4     | 1.6    | 4.9       | 7.8       |  |
| SPOT5     | 1.3    | 4.7       | 7.5       |  |


### WORK PLAN FOR IDS CONTRIBUTION TO ITRF2008

Several problems have to be solved in order to prepare the IDS contribution to ITRF2008 (planned at end of year). The causes of orbits differences have to be elucidated. Some differences should be easy to resolve (eg., IGN vs INA, new LCA ENVISAT orbits), others are more subtle (1 cm mean along-track difference in some GSFC orbits). Simultaneously, origin of incoherencies in some SINEX series have to be found (INA, AUS...). Present processing strategy and models have been examined and a plan is under discussion to the application of standards. Further analysis of the combinations per satellite and per station (worst stations and core network) are also needed. After corrections and alignment of the software to the IDS ITRF2008 recommendations, stations coordinates and EOP parameters will be re-calculated by the AC's. A combined IDS solution will then be generated with CATREF.


Strong collaboration between analysts is stimulated by an Analysis Working Group. Next meeting is planned next June. Contact : F. Lemoine (IDS) analysis coordinator)

#### References

Altamimi Z, Boucher C (2003) Multi-technique combination of time series of station positions and Earth orientation parameters. In: Richter B, Schwegmann W, Dick W(eds) Proceedings of the IERS workshop on combination research and global geophysical fluids. IERS Technical Note No. 30. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, pp 102–106. Tavernier, G., H. Fagard, M. Feissel-Vernier, K. Le Bail, F. Lemoine, C. Noll, R. Noomen, J. C. Ries, L. Soudarin, J. J. Valette, and P. Willis (2006), The international DORIS service: Genesis and early achievements in DORIS Special Issue, P. Willis (Ed.), J. Geodesy, 80(8-11), 403-417, doi:10.1007/s00190-006-0082-4.



# **DORIS Inter-Center ORBIT comparisons**



Overall inter-center orbit consistency is good: < 2 cm (radially) even with issues by some AC Systematic orbit differences revealed by AC or by satellite in some cases.