The SLR and DORIS satellites (addition of Envisat in 2002) improve the information content of the time series as the satellites tracked by SLR+DORIS provide significant information. The series. A disadvantage of this approach is that the solution characteristics of these solutions and their evaluation, including their derivation of these solutions and their evaluation, including their results. Some salient results for the TVG impact on different satellite orbits. We acknowledge the International Laser Geodetic Application (ILGA) and the European Space Agency (ESA) for providing the SLR & DORIS data. We have developed solutions to 5x5 in spherical consistent with the IERS2010 standards with respect to the mean pole solution. The normal equations are stacked on a weekly basis and a solution is obtained every seven days from November 2001 to December 2013 using the NASA GSFC SOLVE software, the quality and effective resolution of the solution is shown in Figure 1. The normal equations are weighted detrended, and then compared only over the period where they have data in common. The different satellite normal equations were weighted detrended, and then compared only over the period where they have data in common. There are two break points in the time series that have a visible impact on the time series: the addition of Stella (October 1993), and the addition of Envisat (June 2002). Polar orbiting satellites (in addition to the Lageos satellites) are important for the stabilization of the solutions for C00. The lower altitude (~800 km), and high quality data from Envisat (SLR & DORIS) positively influence the results.

Satellite Data Summary

The SLR and DORIS solutions (Table 1) occupy a variety of orbits and inclinations. The cannonball satellites provide the core of the solution, but the satellites tracked by SLR-DORIS provide significant information. The addition of Envisat in 2002 improves the information content of the time series. A disadvantage of this approach is that the solution characteristics will vary with the number of satellites and type of data in the solution.

Summary

The GRACE mission has been highly successful in determining the time-variable gravity field of the Earth, producing monthly or even more frequent solutions (of 10-day) using both spherical harmonics and mascons. However the GRACE time series only commences in 2002-2003 and a gap of several years may occur in the series before a GRACE satellite solution is obtained. Satellites tracked by SLR and DORIS have also been used to study time variations in the Earth's gravitational field. In this paper we discuss the development of a time series of high degree spherical harmonic fields based on the available SLR, DORIS, and Envisat data. We have developed solutions to 5x5 in spherical harmonics based on data from up to 18 satellites tracked with SLR and DORIS data. The SLR, DORIS, and Envisat data have been reprocessed for the NASA GSFC submission to IFTR 2013 (series gwg3d2c and gwg3d2b). We discuss the derivation of these solutions and their evaluation, including their comparison with other solutions, such as those derived from GRACE data.