Annual Geocenter Motion from Space Geodesy and Models

J. C. Ries

Center for Space Research The University of Texas at Austin

Geocenter Motion Definition

IERS2010 Conventions define geocenter motion:

C) Geocentric positions

The ITRF origin should be considered as the mean Earth center of mass, averaged over the time span of the SLR observations used and modeled as a secular (linear) function of time. If an instantaneous geocentric position \vec{X} is required, it should be computed as

$$\vec{X} = \vec{X}_{ITRF} - \vec{O}_G,\tag{4.16}$$

where \vec{O}_G represents the geocenter motion in ITRF (vector from the ITRF origin to the instantaneous center of mass) $<^2>$.

IERS conventions currently include tidally-coherent geocenter motion, but not non-tidal variations that dominate the annual geocenter motion.

'Dynamical' Approach to Determine Geocenter Motion

Λ

- Satellites orbit about the center of mass of the entire Earth system (solid Earth, oceans and atmosphere).
- Geocenter motion vector \vec{r}_{cm} can be estimated simultaneously with the orbit, holding reference frame fixed (estimating a pure translation).
- This is essentially identical to estimating degree-1 gravity harmonics.
 - To be completely consistent with non-zero degree-1, a Coriolis-type correction should be included to account for the fact that the geocentric frame origin is no longer an inertial point [Kar, 1997].
- Degree-1 mass redistribution (load) and geocenter motion tend to be used interchangeably.

$$\vec{r}_{cm} = a_e(C_{11}, S_{11}, C_{10})$$

Geocenter Motion from SLR (1)

60-day estimates of geocenter from LAGEOS-1/2 SLRF2005/LPOD2005 station coordinates 40 Geocenter Variation (mm) 20 0 -20 -40 -60 2002 2012 1992 1997 2007 Year X offset by +30 mm, Z by -30 mm

x	х	Y	Y	z	z	
(amp)	(phase)	(amp)	(phase)	(amp)	(phase)	Reference (comments) (phase is in degrees)
2.8	48	2.6	325	6.0	31	Ries, 2013 (60-day estimates; 1993-2013)
2.9	44	2.6	323	6.4	34	Ries, 2013 (30-day estimates; 1993-2013; estimate 2x2 gravity)

Geocenter Motion from SLR (2)

Monthly estimates of geocenter from 5 satellites SLRF2005/LPOD2005, AOD applied, estimate monthly 5x5 gravity field

х	х	Y	Y	z	z	
(amp)	(phase)	(amp)	(phase)	(amp)	(phase)	Reference (comments) (phase is in degrees)
2.7	35	2.8	309	5.2	25	Cheng et al., 2010 (weekly solutions, estimating 5x5 gravity, 1993-2010)
4.1	29	2.8	321	4.5	34	Cheng, 2013 (monthly solutions, estimating 5x5 gravity, 2001-2013)

'Kinematic' Approach

Stack time series of loosely-constrained frame estimates

Fig. 4 Weekly translation components of the SLR ILRS solution with respect to ITRF2008, in millimeter along the X, Y and Z-axes: *left, middle* and *right*, respectively

Fig. 5 Weekly translation components of the DORIS IDS-3 solution with respect to ITRF2008, in millimeter along the X, Y and Z-axes: left, middle and right, respectively

X	х	Y	Y		Z	1
(amp)	(phase)	(amp)	(phase)	Z (amp)	(phase)	Reference (comments) (phase is in degrees)
2.6	42	3.1	315	5.5	22	Altamimi et al., 2010 (ILRS contribution to ITRF2008)

'Global Inversion' Approach

Estimate degree-1 deformation from GPS, using other information (GRACE, Ocean bottom pressure, etc.) to remove load signal above degree 1

х	x	Y	Y	z	z					
(amp)	(phase)	(amp)	(phase)	(amp)	(phase)	Reference (comments) (phase is in degrees)				
1.9	42	3.2	328	3.6	25	Wu, 2006				
2.0	21	2.6	334	3.6	24	Jansen et al., 2009				
1.8	49	2.7	325	4.2	31	Wu et al., 2010				
2.0	62	3.5	322	3.1	19	Rietbroeck et al., 2011 (updated June 2011)				

Geophysical Models

Geophysical models of atmosphere, ocean, and hydrology can provide degree-1 mass redistribution and predict the corresponding geocenter motion after accounting for the load deformation

(models may not fully capture complete mass redistribution, leading to smaller seasonal variations)

X	X	Y	Y	z	z	
(amp)	(phase)	(amp)	(phase)	(amp)	(phase)	Reference (comments) (phase is in degrees)
1.8	36	2.1	332	2.3	24	Chen, 2008
2.1	28	2.1	338	2.7	48	Coullilieux et al., 2009 (Forward model, NCEP, LaDWORLD-Frasier, ECCO OBP)
1.9	34	1.9	337	2.8	35	van Dam, 2011 (NCEP, ECCO, GLDAS, no arctic)

Ensemble of 'Reasonable' Estimates*

Geodetic observations	X (amp)	X (phase)	Y (amp)	Y (phase)	Z (amp)	Z (phase)	Reference (comments) (phase is in degrees)			
SLR (L1/L2)	2.2	59	3.2	299	2.8	45	Eanes et al., 1997; Chen et al., 1999			
SLR/DORIS/GPS	2.9	58	3.7	304	4.5	3	Montag, 1999			
SLR	2.1	47	2.0	322	3.5	42	Bouille et al., 2000 (errors estimated to be 0.5-1.5 mm for amplitudes)			
Topex/Poseidon (SLR/DORIS)	1.8	41	2.9	320	2.4	37	Eanes & Ries, 2000			
SLR (L1/L2)	2.6	32	2.5	305	3.3	35	Creteaux et al., 2002			
SLR (L1/L2)	1.3	45	2.2	321	2.6	31	Eanes, 2005 (12-year series of weekly solutions; scale also adjusted)			
GPS	2.1	42	3.2	343	3.9	77	Lavallée et al., 2006 (errors estimated to by 0.5-0.8 mm and ~20° phase)			
GPS loading + GRACE + OBP	1.9	42	3.2	328	3.6	25	Wu, 2006			
SLR (ILRS)	2.7	45	3.8	327	3.6	4	Collilieux et al., 2009 (translation model; no scale)			
SLR (ILRS)+GPS+OBP	2.4	32	2.6	322	5.3	23	Collilieux et al., 2009 (translation model estimated with inverse loading model)			
SLR (ILRS)+loading model	3.7	34	1.8	324	3.7	34	Collilieux et al., 2009 (translation model estimated with forward loading model)			
SLR(ILRS)+GPS	2.5	19	3.2	327	3.4	17	Collilieux et al., 2009 (use GPS to correct for loadingl)			
GPS loading + GRACE	2.0	21	2.6	334	3.6	24	Jansen et al., 2009			
GPS loading + GRACE + OBP	1.8	49	2.7	325	4.2	31	Wu et al., 2010			
SLR (ILRS)	2.6	40	3.1	315	5.5	22	Altamimi et al., 2010 (ILRS contribution to ITRF2008)			
SLR (5 satellites)	2.7	40	2.8	323	5.2	30	Cheng et al., 2010 (weekly estimates of 5x5 gravity and geocenter, 1993-2010)			
SLR (5 satellites)	2.9	35	2.6	306	4.2	44	Cheng et al., 2010 (monthly estimates of 5x5 gravity and geocenter, 2002-2010)			
SLR (5 satellites)	4.1	29	2.8	321	4.5	34	Cheng, 2013 (monthly estimates of 5x5 gravity and geocenter, 2001-2013)			
GPS loading + GRACE + OBP	2.0	62	3.5	322	3.1	19	Rietbroeck et al., 2011 (updated June 2011)			
GRACE+Ocean Model	2.2	43	3.0	333	2.7	42	Swenson, Chambers & Wahr, 2008 (GRACE + OMCT) (updated 2012)			
SLR (L1/L2)	2.8	48	2.6	325	6.0	31	Ries, 2013 (60-day estimates; 1993-2013)			
SLR (L1/L2)	2.9	44	2.6	323	6.4	34	Ries, 2013 (30-day estimates; 1993-2013; estimate 2x2 gravity)			
Mean (mm)	2.5	41	2.8	321	4.0	31				
Stdev (mm)	0.6	11	0.5	10	1.1	15	* "reasonable" arbitrarily defined as realistic estimates in all 3 coordinate			

Selected Geodetic Estimates and Models

	x	x	Y	Y	z	z		
Geodetic observations	(amp)	(phase)	(amp)	(phase)	(amp)	(phase)	Reference (comments) (phase is in degrees)	
SLR (ILRS)+GPS+OBP	2.4	32	2.6	322	5.3	23	Collilieux et al., 2009 (translation model estimated with inverse loading model)	
SLR (ILRS)	2.6	42	3.1	315	5.5	22	Altamimi et al., 2010 (ILRS contribution to ITRF2008)	
SLR (5 satellites)	2.7	40	2.8	323	5.2	30	Cheng et al., 2010 (weekly estimates of 5x5 gravity and geocenter, 1993-2010)	
SLR (L1/L2)	2.8	48	2.6	325	6.0	31	Ries, 2013 (60-day estimates; 1993-2013)	
GPS loading + GRACE	2.0	21	2.6	334	3.6	24	Jansen et al., 2009	
GPS loading + GRACE + OBP	1.8	49	2.7	325	4.2	31	Wu et al., 2010	
GRACE+Ocean Model	2.2	43	3.0	333	2.7	42	Swenson, Chambers & Wahr, 2008 (GRACE + OMCT) (updated 2012)	
GPS loading + GRACE + OBP	2.0	62	3.5	322	3.1	19	Rietbroeck et al., 2011	
Mean (mm)	2.3	42	2.9	325	4.5	28		
Stdev (mm)	0.4	12	0.3	6	1.2	7		

	X	X	Y	Y	Z	Z				
Geophysical model predictions	(amp)	(phase)	(amp)	(phase)	(amp)	(phase)	Reference (comments) (phase is in degrees)			
Geophysical models	2.4	26	2.0	360	4.1	42	Chen et al., 1999			
Geophysical models	1.6	34	1.8	326	3.1	16	Bouille et al., 2000			
Geophysical models	4.2	46	3.2	291	3.5	35	Dong et al., 2003			
Geophysical models	2.3	16	2.0	347	3.4	30	Moore & Wang, 2003 (CDAS-1 for land water)			
Geophysical models	1.8	36	2.1	332	2.3	24	Chen, 2008			
Geophysical models	2.1	28	2.1	338	2.7	48	Coullilieux et al., 2009 (Forward model, NCEP, LaDWORLD-Frasier, ECCO OBP)			
Geophysical models	1.9	34	1.9	337	2.8	35	van Dam, 2011 (NCEP, ECCO, GLDAS, no arctic)			
Mean (mm)	2.3	31	2.2	333	3.1	33				
Stdev (mm)	0.9	9	0.5	22	0.6	11				

Phases agree well, but amplitudes from models generally smaller than geodetic estimates for Y and Z; GPS-based amplitudes for X and Z generally smaller than from SLR

Selected Geodetic Estimates and Models

	x	x	Y	Y	7	7	de la			
Geodetic observ	Geodetic observations						Y (phase)	Z (amp)	Z (phase)	Reference (comments) (pha
SLR (ILRS)+GPS	+OBF	Þ	2.4		32	2.6	322	5.3	23	Collilieux et al., 2009 (transla
SLR (ILRS)			2.6		42	3.1	315	5.5	22	Altamimi et al., 2010 (ILRS co
SLR (5 satellit	es)		2.7		40	2.8	323	5.2	30	Cheng et al., 2010 (weekly es
SLR (L1/L2)		2.8		48	2.6	325	6.0	31	Ries, 2013 (60-day estimates
GPS loading + G	RACE	E	2.0		21	2.6	334	3.6	24	Jansen et al., 2009
GPS loading + GRA	CE + (ОВР	1.8		49	2.7	325	4.2	31	Wu et al., 2010
GRACE+Ocean	Mode	I	2.2		43	3.0	333	2.7	42	Swenson, Chambers & Wahr
GPS loading + GRA	CE +	овр	2.0		62	3.5	322	3.1	19	Rietbroeck et al., 2011
Mean (mm)	Mean (mm)					2.9	325	4.5	28	
Stdev (mm)	0.4		12	0.3	6	1.2	7			
Geophysical models 2.1 28			2.1	338	2.7	48	Coullilieux et a	al., 2009 (For	ward model, N	CEP, LaDWORLD-Frasier, ECCO OBP)
Geophysical models 1.9 34		34	1.9	337	2.8	35	van Dam, 2011	I (NCEP, ECC	CO, GLDAS, no	arctic)
Mean (mm) 2.3 31		31	2.2	333	3.1	33				
Stdev (mm)	Stdev (mm) 0.9 9			22	0.6	11				

Phases agree well, but amplitudes from models generally smaller than geodetic estimates for Y and Z; GPS-based amplitudes for X and Z generally smaller than from SLR

Annual Geocenter Motion Estimates

All Geodetic Estimates and Models

Geodetic Estimates

Selected Geodetic Estimates

"Climatological annual geocenter model" SLR-only; all four span 15 or more years

X (amp)	X (phase)	Y (amp)	Y (phase)	Z (amp)	Z (phase)
2.7	41	2.8	321	5.5	27
0.2	7	0.2	4	0.4	5

Need for an Annual Geocenter Model

- Annual geocenter represents largest scale seasonal mass redistribution
- Depending on orbit determination tracking used, lack of a model can create artificial seasonal variations in regional and global sea level

Jason-2 orbit comparisons between GPS-based and SLR-DORIS-based orbits exhibit seasonal variation in Z *

Adding geocenter motion model reduces systematic difference (Melachroinos et al., 2013)

Effect on orbit is not 1 for 1, but closer to 0.7 for T/P and Jason orbit

*we can speculate that GPS-based orbits are somewhat 'whitened' by more random GPS orbit errors, while SLR/DORIS orbits are more rigidly tied to the TRF, which currently does not account for the seasonal geocenter motion

Another Example

Jason-2 orbit comparisons between GPS-based and SLR-DORIS orbits exhibit seasonal variation in Z that are reduced with a model (Cerri, 2011, personal communication)

Cerri used 4.2 mm for annual Z; more recent SLR estimates suggest something closer to 6 mm, which looks like it would have reduced the differences further

We should expect to get consistent orbits regardless of technique; geocenter motion model is essential for this

GPS-DORIS/SLR w/o geocenter correction (cm)

GPS-DORIS/SLR with geocenter correction (cm)

What is effect of higher degree loading?

- Geocenter translation estimates from SLR will be affected by local (higher-degree) loading since the SLR network is not globally dense
- Effect is minimized for SLR due to stations being located in generally benign mid-latitudes

Effect of higher degree loading

Higher degree loading (based on GRACE estimates) results in an effect on the translation estimates that is not insignificant (~10%), but probably not greater than the uncertainty

Fall AGU Meeting December 9-13, 2013

Summary (1)

- Seasonal geocenter motion appears to be well-characterized by a simple annual sinusoidal variation
 - Amplitude appears to be ~3 mm amplitude for X and Y, and 5-6 mm for Z
 - Evidence of semi-annual geocenter motion is weak; estimates vary wildly
- Most reasonable geodetic and model estimates agree well in phase and amplitude for Y
 - Model estimates agree well with SLR for X but are significantly smaller for Z, possibly not fully capturing high latitude mass variations
 - GPS-based estimates tend to be smaller than SLR estimates for X and Z

Summary (2)

- Estimate of annual geocenter motion from SLR is affected by local site loading, but the effect is relatively small for SLR stations (~10%)
 - Monthly estimates are likely too noisy to be used directly, but with some level of smoothing, it may provide an alternative degree-1 series to be combined with GRACE results, particularly for high-latitude studies
- Annual geocenter motion should be included as a conventional model (for operational orbit determination, for example), but not necessarily for reference frame analysis
 - Conventional model already includes tidally coherent geocenter