Annual Geocenter Motion from Space Geodesy and Models

J. C. Ries

Center for Space Research
The University of Texas at Austin
Geocenter Motion Definition

IERS2010 Conventions define geocenter motion:

C) Geocentric positions
The ITRF origin should be considered as the mean Earth center of mass, averaged over the time span of the SLR observations used and modeled as a secular (linear) function of time. If an instantaneous geocentric position \vec{X} is required, it should be computed as

$$\vec{X} = \vec{X}_{ITRF} - \vec{O}_G,$$ \hspace{1cm} (4.16)

where \vec{O}_G represents the geocenter motion in ITRF (vector from the ITRF origin to the instantaneous center of mass) $<^2>$.

IERS conventions currently include tidally-coherent geocenter motion, but not non-tidal variations that dominate the annual geocenter motion.
‘Dynamical’ Approach to Determine Geocenter Motion

• Satellites orbit about the center of mass of the entire Earth system (solid Earth, oceans and atmosphere).

• Geocenter motion vector \vec{r}_{cm} can be estimated simultaneously with the orbit, holding reference frame fixed (estimating a pure translation).

• This is essentially identical to estimating degree-1 gravity harmonics.
 - To be completely consistent with non-zero degree-1, a Coriolis-type correction should be included to account for the fact that the geocentric frame origin is no longer an inertial point [Kar, 1997].

• Degree-1 mass redistribution (load) and geocenter motion tend to be used interchangeably.

\[\vec{r}_{cm} = a_e (C_{11}, S_{11}, C_{10}) \]
Geocenter Motion from SLR (1)

60-day estimates of geocenter from LAGEOS-1/2
SLRF2005/LPOD2005 station coordinates

X offset by +30 mm, Z by -30 mm

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Reference (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>amp</td>
<td>(phase)</td>
<td>Y</td>
<td>(phase)</td>
</tr>
<tr>
<td>2.8</td>
<td>48</td>
<td>2.6</td>
<td>325</td>
<td>6.0</td>
</tr>
<tr>
<td>2.9</td>
<td>44</td>
<td>2.6</td>
<td>323</td>
<td>6.4</td>
</tr>
</tbody>
</table>
Geocenter Motion from SLR (2)

Monthly estimates of geocenter from 5 satellites
SLRF2005/LPOD2005, AOD applied, estimate monthly 5x5 gravity field

<table>
<thead>
<tr>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
<th>Reference (comments)</th>
<th>(phase is in degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>35</td>
<td>2.8</td>
<td>309</td>
<td>5.2</td>
<td>25</td>
<td>Cheng et al., 2010</td>
<td>(weekly solutions, estimating 5x5 gravity, 1993-2010)</td>
</tr>
<tr>
<td>4.1</td>
<td>29</td>
<td>2.8</td>
<td>321</td>
<td>4.5</td>
<td>34</td>
<td>Cheng, 2013</td>
<td>(monthly solutions, estimating 5x5 gravity, 2001-2013)</td>
</tr>
</tbody>
</table>

Cheng et al., 2013

X offset by +30 mm, Z by -30 mm
‘Kinematic’ Approach

Stack time series of loosely-constrained frame estimates

Z. Altamimi et al.

Fig. 4 Weekly translation components of the SLR ILRS solution with respect to ITRF2008, in millimeter along the X, Y and Z-axes: *left, middle* and *right*, respectively

Fig. 5 Weekly translation components of the DORIS IDS-3 solution with respect to ITRF2008, in millimeter along the X, Y and Z-axes: *left, middle* and *right*, respectively

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Reference (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (amp)</td>
<td>X (phase)</td>
<td>Y (amp)</td>
<td>Y (phase)</td>
<td>Z (amp)</td>
<td>Z (phase)</td>
</tr>
<tr>
<td>2.6</td>
<td>42</td>
<td>3.1</td>
<td>315</td>
<td>5.5</td>
<td>22</td>
</tr>
</tbody>
</table>

Altamimi et al., 2010 (ILRS contribution to ITRF2008)
‘Global Inversion’ Approach

Estimate degree-1 deformation from GPS, using other information (GRACE, Ocean bottom pressure, etc.) to remove load signal above degree 1

<table>
<thead>
<tr>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
<th>Reference (comments) (phase is in degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>42</td>
<td>3.2</td>
<td>328</td>
<td>3.6</td>
<td>25</td>
<td>Wu, 2006</td>
</tr>
<tr>
<td>2.0</td>
<td>21</td>
<td>2.6</td>
<td>334</td>
<td>3.6</td>
<td>24</td>
<td>Jansen et al., 2009</td>
</tr>
<tr>
<td>1.8</td>
<td>49</td>
<td>2.7</td>
<td>325</td>
<td>4.2</td>
<td>31</td>
<td>Wu et al., 2010</td>
</tr>
<tr>
<td>2.0</td>
<td>62</td>
<td>3.5</td>
<td>322</td>
<td>3.1</td>
<td>19</td>
<td>Rietbroeck et al., 2011 (updated June 2011)</td>
</tr>
</tbody>
</table>
Geophysical Models

Geophysical models of atmosphere, ocean, and hydrology can provide degree-1 mass redistribution and predict the corresponding geocenter motion after accounting for the load deformation (models may not fully capture complete mass redistribution, leading to smaller seasonal variations)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Reference (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (amp)</td>
<td>X (phase)</td>
<td>Y (amp)</td>
<td>Y (phase)</td>
<td>Z (amp)</td>
<td>Z (phase)</td>
</tr>
<tr>
<td>1.8</td>
<td>36</td>
<td>2.1</td>
<td>332</td>
<td>2.3</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>28</td>
<td>2.1</td>
<td>338</td>
<td>2.7</td>
<td>48</td>
</tr>
<tr>
<td>1.9</td>
<td>34</td>
<td>1.9</td>
<td>337</td>
<td>2.8</td>
<td>35</td>
</tr>
</tbody>
</table>
Ensemble of ‘Reasonable’ Estimates*

<table>
<thead>
<tr>
<th>Geodetic observations</th>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
<th>Reference (comments)</th>
<th>(phase is in degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR (L1/L2)</td>
<td>2.2</td>
<td>59</td>
<td>3.2</td>
<td>299</td>
<td>2.8</td>
<td>45</td>
<td>Eanes et al., 1997; Chen et al., 1999</td>
<td></td>
</tr>
<tr>
<td>SLR/DORIS/GPS</td>
<td>2.9</td>
<td>58</td>
<td>3.7</td>
<td>304</td>
<td>4.5</td>
<td>3</td>
<td>Montag, 1999</td>
<td></td>
</tr>
<tr>
<td>SLR</td>
<td>2.1</td>
<td>47</td>
<td>2.0</td>
<td>322</td>
<td>3.5</td>
<td>42</td>
<td>Bouille et al., 2000 (errors estimated to be 0.5-1.5 mm for amplitudes)</td>
<td></td>
</tr>
<tr>
<td>Topex/Poseidon (SLR/DORIS)</td>
<td>1.8</td>
<td>41</td>
<td>2.9</td>
<td>320</td>
<td>2.4</td>
<td>37</td>
<td>Eanes & Ries, 2000</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.6</td>
<td>32</td>
<td>2.5</td>
<td>305</td>
<td>3.3</td>
<td>35</td>
<td>Creteaux et al., 2002</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>1.3</td>
<td>45</td>
<td>2.2</td>
<td>321</td>
<td>2.6</td>
<td>31</td>
<td>Eanes, 2005 (12-year series of weekly solutions; scale also adjusted)</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>2.1</td>
<td>42</td>
<td>3.2</td>
<td>343</td>
<td>3.9</td>
<td>77</td>
<td>Lavallée et al., 2006 (errors estimated to by 0.5-0.8 mm and ~20° phase)</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.6</td>
<td>40</td>
<td>3.1</td>
<td>315</td>
<td>5.5</td>
<td>22</td>
<td>Altamimi et al., 2010 (ILRS contribution to ITRF2008)</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.9</td>
<td>35</td>
<td>2.6</td>
<td>306</td>
<td>4.2</td>
<td>44</td>
<td>Cheng et al., 2010 (monthly estimates of 5x5 gravity and geocenter, 2002-2010)</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>4.1</td>
<td>29</td>
<td>2.8</td>
<td>321</td>
<td>4.5</td>
<td>34</td>
<td>Cheng, 2013 (monthly estimates of 5x5 gravity and geocenter, 2001-2013)</td>
<td></td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>1.9</td>
<td>42</td>
<td>3.2</td>
<td>328</td>
<td>3.6</td>
<td>25</td>
<td>Wu, 2006</td>
<td></td>
</tr>
<tr>
<td>SLR (ILRS)</td>
<td>2.7</td>
<td>45</td>
<td>3.8</td>
<td>327</td>
<td>3.6</td>
<td>4</td>
<td>Collilieux et al., 2009 (translation model; no scale)</td>
<td></td>
</tr>
<tr>
<td>SLR (ILRS)+GPS+OBP</td>
<td>2.4</td>
<td>32</td>
<td>2.6</td>
<td>322</td>
<td>5.3</td>
<td>23</td>
<td>Collilieux et al., 2009 (translation model estimated with inverse loading model)</td>
<td></td>
</tr>
<tr>
<td>SLR (ILRS)+loading model</td>
<td>3.7</td>
<td>34</td>
<td>1.8</td>
<td>324</td>
<td>3.7</td>
<td>34</td>
<td>Collilieux et al., 2009 (translation model estimated with forward loading model)</td>
<td></td>
</tr>
<tr>
<td>SLR(ILRS)+GPS</td>
<td>2.5</td>
<td>19</td>
<td>3.2</td>
<td>327</td>
<td>3.4</td>
<td>17</td>
<td>Collilieux et al., 2009 (use GPS to correct for loading!)</td>
<td></td>
</tr>
<tr>
<td>GPS loading + GRACE</td>
<td>2.0</td>
<td>21</td>
<td>2.6</td>
<td>334</td>
<td>3.6</td>
<td>24</td>
<td>Jansen et al., 2009</td>
<td></td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>1.8</td>
<td>49</td>
<td>2.7</td>
<td>325</td>
<td>4.2</td>
<td>31</td>
<td>Wu et al., 2010</td>
<td></td>
</tr>
<tr>
<td>SLR (ILRS)</td>
<td>2.6</td>
<td>40</td>
<td>3.1</td>
<td>315</td>
<td>5.5</td>
<td>22</td>
<td>Altamimi et al., 2010 (ILRS contribution to ITRF2008)</td>
<td></td>
</tr>
<tr>
<td>SLR (5 satellites)</td>
<td>2.7</td>
<td>40</td>
<td>2.8</td>
<td>323</td>
<td>5.2</td>
<td>30</td>
<td>Cheng et al., 2010 (weekly estimates of 5x5 gravity and geocenter, 1993-2010)</td>
<td></td>
</tr>
<tr>
<td>SLR (5 satellites)</td>
<td>2.9</td>
<td>35</td>
<td>2.6</td>
<td>306</td>
<td>4.2</td>
<td>44</td>
<td>Cheng et al., 2010 (monthly estimates of 5x5 gravity and geocenter, 2002-2010)</td>
<td></td>
</tr>
<tr>
<td>SLR (5 satellites)</td>
<td>4.1</td>
<td>29</td>
<td>2.8</td>
<td>321</td>
<td>4.5</td>
<td>34</td>
<td>Cheng, 2013 (monthly estimates of 5x5 gravity and geocenter, 2001-2013)</td>
<td></td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>2.0</td>
<td>62</td>
<td>3.5</td>
<td>322</td>
<td>3.1</td>
<td>19</td>
<td>Rietbroeck et al., 2011 (updated June 2011)</td>
<td></td>
</tr>
<tr>
<td>GRACE+Ocean Model</td>
<td>2.2</td>
<td>43</td>
<td>3.0</td>
<td>333</td>
<td>2.7</td>
<td>42</td>
<td>Swenson, Chambers & Wahr, 2008 (GRACE + CMCT) (updated 2012)</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.8</td>
<td>48</td>
<td>2.6</td>
<td>325</td>
<td>6.0</td>
<td>31</td>
<td>Ries, 2013 (60-day estimates; 1993-2013)</td>
<td></td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.9</td>
<td>44</td>
<td>2.6</td>
<td>323</td>
<td>6.4</td>
<td>34</td>
<td>Ries, 2013 (30-day estimates; 1993-2013; estimate 2x2 gravity)</td>
<td></td>
</tr>
<tr>
<td>Mean (mm)</td>
<td>2.5</td>
<td>41</td>
<td>2.8</td>
<td>321</td>
<td>4.0</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stdev (mm)</td>
<td>0.6</td>
<td>11</td>
<td>0.5</td>
<td>10</td>
<td>1.1</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* “reasonable” arbitrarily defined as realistic estimates in all 3 coordinates
Selected Geodetic Estimates and Models

<table>
<thead>
<tr>
<th>Geodetic observations</th>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
<th>Reference (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR (ILRS)+GPS+OBP</td>
<td>2.4</td>
<td>32</td>
<td>2.6</td>
<td>322</td>
<td>5.3</td>
<td>23</td>
<td>Collilieux et al., 2009 (translation model estimated with inverse loading model)</td>
</tr>
<tr>
<td>SLR (ILRS)</td>
<td>2.6</td>
<td>42</td>
<td>3.1</td>
<td>315</td>
<td>5.5</td>
<td>22</td>
<td>Altamimi et al., 2010 (ILRS contribution to ITRF2008)</td>
</tr>
<tr>
<td>SLR (5 satellites)</td>
<td>2.7</td>
<td>40</td>
<td>2.8</td>
<td>323</td>
<td>5.2</td>
<td>30</td>
<td>Cheng et al., 2010 (weekly estimates of 5x5 gravity and geocenter, 1993-2010)</td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.8</td>
<td>48</td>
<td>2.6</td>
<td>325</td>
<td>6.0</td>
<td>30</td>
<td>Ries, 2013 (60-day estimates; 1993-2013)</td>
</tr>
<tr>
<td>GPS loading + GRACE</td>
<td>2.0</td>
<td>21</td>
<td>2.6</td>
<td>334</td>
<td>3.6</td>
<td>24</td>
<td>Jansen et al., 2009</td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>1.8</td>
<td>49</td>
<td>2.7</td>
<td>325</td>
<td>4.2</td>
<td>31</td>
<td>Wu et al., 2010</td>
</tr>
<tr>
<td>GRACE+Ocean Model</td>
<td>2.2</td>
<td>43</td>
<td>3.0</td>
<td>333</td>
<td>2.7</td>
<td>42</td>
<td>Swenson, Chambers & Wahr, 2008 (GRACE + OMCT) (updated 2012)</td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>2.0</td>
<td>62</td>
<td>3.5</td>
<td>322</td>
<td>3.1</td>
<td>19</td>
<td>Rietbroeck et al., 2011</td>
</tr>
<tr>
<td>Mean (mm)</td>
<td>2.3</td>
<td>42</td>
<td>2.9</td>
<td>325</td>
<td>4.5</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Stdev (mm)</td>
<td>0.4</td>
<td>12</td>
<td>0.3</td>
<td>6</td>
<td>1.2</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geophysical model predictions</th>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
<th>Reference (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical models</td>
<td>2.4</td>
<td>26</td>
<td>2.0</td>
<td>360</td>
<td>4.1</td>
<td>42</td>
<td>Chen et al., 1999</td>
</tr>
<tr>
<td>Geophysical models</td>
<td>1.6</td>
<td>34</td>
<td>1.8</td>
<td>326</td>
<td>3.1</td>
<td>16</td>
<td>Bouille et al., 2000</td>
</tr>
<tr>
<td>Geophysical models</td>
<td>4.2</td>
<td>46</td>
<td>3.2</td>
<td>291</td>
<td>3.5</td>
<td>35</td>
<td>Dong et al., 2003</td>
</tr>
<tr>
<td>Geophysical models</td>
<td>2.3</td>
<td>16</td>
<td>2.0</td>
<td>347</td>
<td>3.4</td>
<td>30</td>
<td>Moore & Wang, 2003 (CDAS-1 for land water)</td>
</tr>
<tr>
<td>Geophysical models</td>
<td>1.8</td>
<td>36</td>
<td>2.1</td>
<td>332</td>
<td>2.3</td>
<td>24</td>
<td>Chen, 2008</td>
</tr>
<tr>
<td>Geophysical models</td>
<td>2.1</td>
<td>28</td>
<td>2.1</td>
<td>338</td>
<td>2.7</td>
<td>48</td>
<td>Coullilieux et al., 2009 (Forward model, NCEP, LaDWorld-Frasier, ECCO OBP)</td>
</tr>
<tr>
<td>Geophysical models</td>
<td>1.9</td>
<td>34</td>
<td>1.9</td>
<td>337</td>
<td>2.8</td>
<td>35</td>
<td>van Dam, 2011 (NCEP, ECCO, GLDAS, no arctic)</td>
</tr>
<tr>
<td>Mean (mm)</td>
<td>2.3</td>
<td>31</td>
<td>2.2</td>
<td>333</td>
<td>3.1</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Stdev (mm)</td>
<td>0.9</td>
<td>9</td>
<td>0.5</td>
<td>22</td>
<td>0.6</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Phases agree well, but amplitudes from models generally smaller than geodetic estimates for Y and Z; GPS-based amplitudes for X and Z generally smaller than from SLR
Selected Geodetic Estimates and Models

<table>
<thead>
<tr>
<th>Geodetic observations</th>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
<th>Reference (comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR (ILRS)+GPS+OBP</td>
<td>2.4</td>
<td>32</td>
<td>2.6</td>
<td>322</td>
<td>5.3</td>
<td>23</td>
<td>Collilieux et al., 2009 (translation model estimated with inverse loading model)</td>
</tr>
<tr>
<td>SLR (ILRS)</td>
<td>2.6</td>
<td>42</td>
<td>3.1</td>
<td>315</td>
<td>5.5</td>
<td>22</td>
<td>Altamimi et al., 2010 (ILRS contribution to ITRF2008)</td>
</tr>
<tr>
<td>SLR (5 satellites)</td>
<td>2.7</td>
<td>40</td>
<td>2.8</td>
<td>323</td>
<td>5.2</td>
<td>30</td>
<td>Cheng et al., 2010 (weekly estimates of 5x5 gravity and geocenter, 1993-2010)</td>
</tr>
<tr>
<td>SLR (L1/L2)</td>
<td>2.8</td>
<td>48</td>
<td>2.6</td>
<td>325</td>
<td>6.0</td>
<td>31</td>
<td>Ries, 2013 (60-day estimates)</td>
</tr>
<tr>
<td>GPS loading + GRACE</td>
<td>2.0</td>
<td>21</td>
<td>2.6</td>
<td>334</td>
<td>3.6</td>
<td>24</td>
<td>Jansen et al., 2009</td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>1.8</td>
<td>49</td>
<td>2.7</td>
<td>325</td>
<td>4.2</td>
<td>31</td>
<td>Wu et al., 2010</td>
</tr>
<tr>
<td>GRACE+Ocean Model</td>
<td>2.2</td>
<td>43</td>
<td>3.0</td>
<td>333</td>
<td>2.7</td>
<td>42</td>
<td>Swenson, Chambers & Wahr,</td>
</tr>
<tr>
<td>GPS loading + GRACE + OBP</td>
<td>2.0</td>
<td>62</td>
<td>3.5</td>
<td>322</td>
<td>3.1</td>
<td>19</td>
<td>Rietbroeck et al., 2011</td>
</tr>
</tbody>
</table>

Mean (mm): 2.3 42 2.9 325 4.5 28

Stdev (mm): 0.4 12 0.3 6 1.2 7

<table>
<thead>
<tr>
<th>Geophysical models</th>
<th>2.1</th>
<th>28</th>
<th>2.1</th>
<th>338</th>
<th>2.7</th>
<th>48</th>
<th>Coullilieux et al., 2009 (Forward model, NCEP, LaDWorld-Frasier, ECCO OBP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical models</td>
<td>1.9</td>
<td>34</td>
<td>1.9</td>
<td>337</td>
<td>2.8</td>
<td>35</td>
<td>van Dam, 2011 (NCEP, ECCO, GLDAS, no arctic)</td>
</tr>
</tbody>
</table>

Mean (mm): 2.3 31 2.2 333 3.1 33

Stdev (mm): 0.9 9 0.5 22 0.6 11

Phases agree well, but amplitudes from models generally smaller than geodetic estimates for Y and Z; GPS-based amplitudes for X and Z generally smaller than from SLR.
Annual Geocenter Motion Estimates

“Climatological annual geocenter model”
SLR-only; all four span 15 or more years

<table>
<thead>
<tr>
<th></th>
<th>X (amp)</th>
<th>X (phase)</th>
<th>Y (amp)</th>
<th>Y (phase)</th>
<th>Z (amp)</th>
<th>Z (phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.7</td>
<td>41</td>
<td>2.8</td>
<td>321</td>
<td>5.5</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>7</td>
<td>0.2</td>
<td>4</td>
<td>0.4</td>
<td>5</td>
</tr>
</tbody>
</table>

Fall AGU Meeting December 9-13, 2013
Need for an Annual Geocenter Model

• Annual geocenter represents largest scale seasonal mass redistribution

• Depending on orbit determination tracking used, lack of a model can create artificial seasonal variations in regional and global sea level

Jason-2 orbit comparisons between GPS-based and SLR-DORIS-based orbits exhibit seasonal variation in Z^*

Adding geocenter motion model reduces systematic difference (Melachroinos et al., 2013)

Effect on orbit is not 1 for 1, but closer to 0.7 for T/P and Jason orbit

*we can speculate that GPS-based orbits are somewhat ‘whitened’ by more random GPS orbit errors, while SLR/DORIS orbits are more rigidly tied to the TRF, which currently does not account for the seasonal geocenter motion
Another Example

Jason-2 orbit comparisons between GPS-based and SLR-DORIS orbits exhibit seasonal variation in Z that are reduced with a model (Cerri, 2011, personal communication)

Cerri used 4.2 mm for annual Z; more recent SLR estimates suggest something closer to 6 mm, which looks like it would have reduced the differences further.

We should expect to get consistent orbits regardless of technique; geocenter motion model is essential for this.

![GPS-DORIS/SLR w/o geocenter correction (cm)](image1)

![GPS-DORIS/SLR with geocenter correction (cm)](image2)
What is effect of higher degree loading?

- Geocenter translation estimates from SLR will be affected by local (higher-degree) loading since the SLR network is not globally dense.
- Effect is minimized for SLR due to stations being located in generally benign mid-latitudes.

From Cheng et al., Abstract G53B-1137, 2012

Annual vertical deformation from GRACE (mm) (horizontal is sub-mm at mid-latitudes)
Effect of higher degree loading

Higher degree loading (based on GRACE estimates) results in an effect on the translation estimates that is not insignificant (~10%), but probably not greater than the uncertainty.

From Cheng et al., Abstract G53B-1137, 2012
Summary (1)

• Seasonal geocenter motion appears to be well-characterized by a simple annual sinusoidal variation
 • Amplitude appears to be ~3 mm amplitude for X and Y, and 5-6 mm for Z
 • Evidence of semi-annual geocenter motion is weak; estimates vary wildly

• Most reasonable geodetic and model estimates agree well in phase and amplitude for Y
 • Model estimates agree well with SLR for X but are significantly smaller for Z, possibly not fully capturing high latitude mass variations
 • GPS-based estimates tend to be smaller than SLR estimates for X and Z
Summary (2)

- Estimate of annual geocenter motion from SLR is affected by local site loading, but the effect is relatively small for SLR stations (~10%)
 - Monthly estimates are likely too noisy to be used directly, but with some level of smoothing, it may provide an alternative degree-1 series to be combined with GRACE results, particularly for high-latitude studies
- Annual geocenter motion should be included as a conventional model (for operational orbit determination, for example), but not necessarily for reference frame analysis
 - Conventional model already includes tidally coherent geocenter