

DORIS USO Behavior Revealed by Jason-2/T2L2

<u>F.G. Lemoine</u>, P. Exertier, A. Belli, N. Zelensky IERS Unified Analysis Workshop Université Paris-Diderot Paris, FRANCE July 10-12, 2017

DORIS/USO – Previous Experiences

Radiation Exposure

(from CNES Engineering tables)

	km / *	0	15	30	45	60	75	90
	36000	1062,02	837,09	505,15	369,52	313,98	292,21	291,47
	34000	1591,68	1273,07	788,17	548,4	461,56	423,6	411,54
	32000	2509,33	2026,37	1248,13	840,76	691,34	627,64	609,29
	30000	3858,56	3133,92	1940,93	1282,93	1042,78	938,95	906,6
	28000	5783,9	4737,35	2972,89	1942,81	1559,35	1395,68	1348,62
	26000	8343,46	6934,36	4425,04	2878,37	2295,66	2047,58	1969,35
	24000	11362,21	9632,96	6338,59	4109,87	3245,64	2885,92	2777,21
	22000	15777,46	13421,91	8976,2	5846,92	4596,84	4069,04	3912,51
	20000	20175,89	17562,4	12104,74	7924,85	6162,78	5451,96	5245,02
	18000	24011,77	21454,28	15410,17	10196,69	7836,68	6915,93	6657,84
	16000	22585,46	21570,6	16894,15	11385,25	8618,85	7577,93	7284,74
	14000	14779,27	15125,29	14741,68	10512,99	7731,49	6744,47	6476,95
	12000	6725,73	8552,99	10106,44	8172,61	5779,74	4962,67	4749,26
	11000	3269,78	5006,79	7467,25	6662	4626,29	3915,14	3740,56
	10000	1724,44	2780,89	5266,56	5325,58	3685,09	3062,75	2913,15
	9000	1925,22	2106,92	3818,95	4284,66	3052,35	2495,58	2369,88
	8000	3780,52	3120,58	3363,93	3678,61	2839,87	2305,02	2187,22
	7000	7953,98	6160,39	4226,75	3880,96	3233,35	2667,89	2540,78
	6000	16400,2	12729,73	7344,28	5602,25	4756	4033,64	3860,53
	5000	32228,47	24964,25	13978,63	9664,53	8034,36	6967,32	6681,35
	4500	43909,04	34171,28	19143.22	12913,86	10625,02	9287,2	8905,32
	4000	60984,15	45458,09	26127,29	17374,55	14180,68	12454,9	11957,75
	3500	75299.65	58046.68	33198,95	21851.36	17714.66	15633.4	15025,15
	3000	79941,44	63062,99	37234,74	24277,23	19491,59	17265,36	16507,48
	2500	66696,34	55179,64	34409.08	22134.2	17550,29	15570,3	14956,14
	2000	37946,19	33648,06	22851,83	14553,66	11480,94	10153,37	9760,13
	1700	20536,29	19050,83	13718,53	8906,63	7001,32	6192,35	5970,18
	1500	11730,95	11307,83	8629,75	5682,23	4496	3911,08	3757,43
ason-2,3:	1400	8370,05	8267	6561,9	4381,07	22270-02	2989,59	2874,24
	1300	3055,20	3773.20	4025-00	2220	2507,83	2, 91, 91	2087,77
~2500 rads/yr 📗	1200	3669,37	3772,93	3396,91	23-5,75	1799.89	1574,81	1507,71
	1100	2135,46	2283,3	2307,3	1653	1250,18	1128,37	1082,27
	1000	1072,35	1292,08	1538,08	1149,1	881,68	789	752,55
SPOT-4,5, SARA	900	500,24	706	1016,48	791,03	594,75	542,72	
	800	180,39	358,89	653,73	537,49	404,29		358,89
ENVISAT:	700	25,82	156,45	389,77	348,51	263,73	252,52	236,77
	600	25,82	49,55	206,88	212,59	162,18	157,88	148,92
~360 rads/yr	500	0	4,53	89,56	115,37	89,64	99,62	92,06
	500	U	4,05	00,66	113,37	65,04	55,0Z	52,00

< 1 krad / year 1-3 krad / year 3-10 krad / year 10-20 krad / year 20-30 krad / year > 30 krad / year

Impact on DORIS/ITRF2014

SAA On-board Freq signal over 5days, Jason-1, SPOT-5, SPOT-4

Capdeville et al. Adv. Space Res. (2016)

- 1. ITRF2008 station positions & velocities for "SAA" stations directly affected by uncorrected SPOT-5 data.
- For ITRF2014: All ACs used corrective model and/or downweighting elimination of SAA station data for SPOT-5 & Jason-1.

Satellite data used in ITRF2008/ITRF2014

Moreaux et al. Adv. Space Res. (2016)

- 1. Jason-1 included since its inclination complements the other satellites.
- 2. Use "corrected data" + downwt/ eliminate SAA stations.
- 3. No other satellite USOs receive special treatment in ITRF2014.

Jason-2/T2L2

- 1. "Time Transfer by Laser Link"
- Two photon detectors + event timer with ps resolution linked to the DORIS USO.

T2L2 records in time scale provided by DORIS the arrival time of laser pulses at Jason-2.

In combination with precise ground clocks at SLR stations (H2 masers), it is possible to determine $\Delta f/f$ over time intervals of T=60 secs.

Precision is dependent on short term stability of USO, quantity & quality of range measurements. $3-5 \times 10^{-13}$

Exertier et al. Adv. Space Res. (2010)

Jayles et al. Adv. Space Res. (2016)

Laser Retroreflector Array

Two Applications:

(1) "Synchronize" Timing of SLR network.
(2) Study in detail behavior of USO in space environment and characterize different effects (radiation, thermal effects, aging).

T2L2 Data: Example

 $\Delta f/f$ in Jan. 2013 from five SLR stations.

Belli et al. Adv. Space Res. (2016)

See also A. Belli, PhD Thesis (2017)

- Best data comes from stations with H2 masers: Grasse (7845), Herstmonceux (7840).
- Data can read variations caused by radiation dosage (SAA), temperature variations, and aging.
- The data benefit two techniques: both DORIS & SLR giving us an understanding and global perspective.

USO Effects & Model Derivation

Jason-2 CARMEN 87 MeV integrated proton flux map (2009–2011 average).

Capdeville et al. Adv. Space Res. (2016)

$$\delta \widetilde{v}_{SAA}(t) = \gamma_1 \int_{t_0}^{t_{SAA}} \gamma_Q D(t)$$

$$\delta \widetilde{v}(t > t_{SAA}) = \delta \widetilde{v}_{SAA} \left[\exp^{-(t - t_{SAA})/\tau} + \gamma_2 t \right]$$

Radiation Model
$$\delta \widetilde{v}_D(t) = \sum_{i=0}^{2} \beta_j t^j$$

Drift Model

i=0

Temperature Effects on Jason-2 USO Jan. 2013, showing orbit-to-orbit effects & impact of change in Jason-2 attitude.

$$\delta \widetilde{v}_T = \sum_{i=1}^3 \alpha_i (T(t) - T_0)^i$$

Belli et al. Adv. Space Res. (2016)

See also A. Belli, PhD Thesis (2017)

Jason-2 USO Model & Comparison w. T2L2

USO Effects & Model Refinement for Jason-2 & Jason-3

Temperature Effects

$$\delta \widetilde{v}_T = \sum_{i=1}^3 \alpha_i (T(t) - T_0)^i$$

• Sufficient to calculate only rate term:

 $\alpha_1 \left[T(t) - T_o \right]$

• Coefficients for J2 (2008), J3 (2016) similar magnitude but opposite sign.

Radiation Effect @ 60-days

• A 60-day signal was observed in the T2L2 data when the s/c is in fixed yaw. Increase over ten days, then relaxation over 45-50 days.

• Belli et al. (2017) propose this is due to alignment of Yaxis of s/c with magnetic field lines, leading to increased sensitivity to radiation in SAA area in fixed-yaw regime.

- It is possible to solve explicitly for coefficients to model this behavior.
- The significance is that **Belli et al. (2017)** have identified an additional signal at a Jason-sub-draconitic period (~60 days) that is in the current data, and is not driven by radiation pressure mismodeling. ***

*** AC's must still improve SRP model, include motion of solar arrays using quaternions.

Belli et al., European Frequency & Time Forum (2017) proceeding paper

Jason-2 USO Behavior vs. CNES MOE Freq. biases

Frequency variations of J3 are >> J2 in 2016 but not in 2008

Jason-2 vs Jason-3 Sensitivity

<u>Here, MOE Δf/f are filtered with</u> <u>1-day filter to eliminate medium</u> <u>& long-term signal</u>

Jason-2 $\Delta f/f$ (2008) (TOP) vs Jason-3 $\Delta f/f$ (2016) (BOTTOM) from MOE solutions.

Jason-3 sensitivity to radiation is about ~3X that of Jason-2 at the same age of space exposure.

Summary

DORIS USO Sensitivity Summary

- 1. USOs show sensitivity to temperature, radiation, and have aging effects.
- 2. A "60-day" effect on DORIS-USO is identified that is related to Jason attitude law and anisotropy of incident radiation flux into the USO box.
- 3. Sensitivity is affected by "pre-treatment" and amount of shielding on s/c.
- 4. A general model that accounts parametrically for these effects can be derived for Jason-2 and eventually for Jason-3.
- 5. Lower satellites (SPOT-5) not immune. Suggests there is a need for general treatment of these effects on all DORIS satellites.

Immediate Future Actions

- 1. Plerre Exertier/A. Belli to make available corrected DORIS/V2 Data (Jason-2) for testing by the DORIS Analysis Centers.
- 2. Improved Frequency model of Jason-2 & Jason-3 can be implemented in DORIS/RINEX processing to be tested by NASA GSFC and other DORIS ACs.