

MONUMENT STABILITY

DORIS NETWORK EXPERIENCE FEEDBACK

Jérôme Saunier

IGN, service de géodésie et nivellement

1. DORIS SPECIFICITIES

1. THE DORIS NETWORK

SPECIFICITIES OF THE SYSTEM

- ASCENDING SYSTEM : INTERNAL JAMMING
- DORIS NETWORK = HEART OF THE SYSTEM
- => CENTRALIZED CONTROL OF THE NETWORK DEPLOYMENT

1. EXCLUSIVELY MAINTAINED BY CNES AND IGN

- FRENCH SYSTEM DEVELOPED BY CNES AND IGN
- NETWORK DEPLOYMENT BY IGN*
 - 1986-1990: Operational set-up (launch of Spot-2 = start of the system)
 - 1990-2000: Densification (32 > 54 stations)
 - 2000-nowadays: Renovation
 - System more exacting and effective
 - Instruments upgrade
 - Better stability and environment for the antenna

KEEPING TWO OBJECTIVES IN SIGHT:

- Homogeneous coverage
- Co-location with other space geodetic techniques

COLD-BAY

GOLDSTONE

KAUAI

GOLDSTONE

MIAMI

LE-LAMENTINO

SANTA-CRUZ

AREO

PAPEETE

RIKITEA

EASTER-ISLAND SALL

^{*} see Journal of Geodesy (2006), H. Fagard « Twenty years of evolution for the DORIS permanent network »

1. DORIS NETWORK MONUMENTS

- MORE THAN TWENTY YEARS OF EXPERIENCE
- 2005 : DORIS SYSTEM REQUIREMENTS
 - Doc « System Requirements for management of the DORIS network station»
 - Requirements for station installation : 36 key points to observe

2009 : DRAWING UP THREE STANDARD MONUMENTS

- Compliant to all the DORIS system requirements
- Dependent on the layout of the premises and the antenna environment
- Fitting in all cases according to the site layout

1. SYSTEM REQUIREMENTS

REFERENCE POINT – ANTENNA VERTICALITY

• Antenna verticality adjusted with accuracy using leveling screws

ANTENNA HEIGHT

- > 1,85m to reduce signal power attenuation and multipath effect
- Visibility : no obstruction above 5° elevation

RESISTANCE

- Corrosion: high quality stainless steel
- Metals compatibility: antenna base / antenna support

1. GEODETIC REQUIREMENTS

GEODETIC PRINT

- Fiducial marker
- Essential to measure antenna offset after replacing or moving

MARKER VISIBILITY

Within sight of theodolites

STABILITY

- Anchored to the bedrock
- Long-term stability: better than 3 mm over a ten-year period (apart from tectonics)

2. MONUMENT SPECIFICATIONS

2. CONCRETE BASE – GUIDING PRINCIPLES

RECONNAISSANCE

- Geologic information
- Search for rocky outcrop, exposed bedrock
- Monument type selection (concrete block or pillar)

DIMENSIONS

- Design and depth: dependent on soil structure
- Sizes (width and height above ground): dependent on the antenna environment

CONSTRUCTION

- High strength, reinforced and vibrated concrete is required.
- Steel reinforcement rebars diameter 1cm are required.
- After excavation and construction, soil is backfilled and compacted.
- Curing time for concrete must be respected
- Remote areas : make do with the existing local skills!

2. CONCRETE BASE CONSTRUCTION

SOLID BEDROCK

- Drill down around 0,5m to embed 4 rods
- Make a steel reinforcing cage

HARD SOIL

- Pour a large (1 m) reinforced concrete slab to make a stable foundation
- Adjusted dimensions according to the hardness of the soil

SOFT SOIL

- Pour a very large (2m sided half meter high) reinforced concrete slab
- Optional : drive on the pillar axis a long pipe (15cm diameter 10 m long)

2. CONCRETE BASE CONSTRUCTION

SOLID BEDROCK

HARD SOIL

SOFT SOIL

2. ANTENNA SUPPORT

- = METALLIC STRUCTURE HOLDING THE DORIS ANTENNA
- ANTENNA SUPPORT PARTS: FOOT / BODY / HEAD
- HEAD: SUMMITAL TRIANGULAR PLATE EQUIPPED WITH LEVELING SCREWS TO ADJUST THE ANTENNA VERTICALITY

2. MONUMENT TYPE 1

Description	Mini-pylon (0,5m high) installed on load- bearing wall
Concrete base	Top of a load-bearing pillar or at the corner of two load-bearing walls of small building (one storied)
Antenna support	1 « Normand » pylon element topped by a stainless steel triangular plate type I
Benefits	Small footprint, easy shipping, easy setting
Drawbacks	Galvanized but not corrosion-resistant steel, low-rise support
Preferential Use	Low-rise building with narrow walls, non-corrosive environment

Djibouti

2. MONUMENT TYPE 2

Description	Custom made stainless steel tripod installed on concrete pillar
Concrete base	Pillar 1,5 m high above ground
Antenna support	Custom made stainless steel tripod topped by a stainless steel triangular plate type II
Benefits	Custom made (adaptable on existing threaded rods), high corrosion resistance, stability, easy shipping, easy setting.
Drawbacks	Maximum height 50 cm for stability reasons
Preferential Use	Corrosive environment, clear sky view

Port-Moresby

2. MONUMENT TYPE 3

Description	Very rigid steel tower installed on concrete block
Concrete base	Concrete block or concrete slab
Antenna support	2 « Leclerc » pylon element (2x1m) topped by a stainless steel triangular plate type III
Benefits	Higher monument, smaller pedestal.
Drawbacks	Limited corrosion resistance, shipping, setting.
Preferential Use	If surrounded by near obstructions

Metsähovi

3. STABILITY ASSESSMENT

3. MONUMENTS IN THE DORIS NETWORK

MONUMENT AGE

About 5 on-site interventions per year – Network made up of **56 stations** on average each site is visited every 10 years

MONUMENT TYPES

Progressive renovation

3. NETWORK REVIEW: COMPARATIVE ASSESSMENT

- STABILITY IMPROVEMENT: AN ONGOING EFFORT SINCE 15 YEARS
- CURRENT STABILITY OF THE MONUMENTS RATHER GOOD ON THE WHOLE

Reykjavik – Iceland (REZB)

Distance to GPS (REYK) = (-1856.22 m, -1334.64 m, 595.235 m) Distance to Tide Gauge : ~1.57 km (GLOSS gauge 229)

Hartebeesthoek - South Africa (HDMB)

Monument type:

2 meter tubular mast; 4 m deep (3 m in soil, 1 m in rock).

Distance to GPS (HARB) = (4.188 m, -22.29 m, -10.254 m)Distance to SLR (7501) = (747.659 m, -2017.167 m, -217.841 m)

Greenbelt – U.S.A. (GRFB)

Monument type:

1.8 m concrete pillar.

Distance to GPS (GODE) = (62.159 m, 138.602 m, 139.019 m) Distance to SLR = (8.288 m,41.594 m, 45.159 m) Distance to new VLBI = (18.876 m, 146.212 m, 166.658 m)

3. STABILITY ISSUE

TIME SERIES: MONUMENT MOTION CAN BE CONFOUNDED WITH GEODETIC SIGNALS

CONCRETE BASE MOVEMENT

- Bedrock anchoring or not
- Height of the structure (building)

METALLIC SUPPORT MOVEMENT

- Thermal expansion/distortion effects: seasonal or diurnal
- Prevailing winds
- Storms
- **⇒ LIMITING THE MONUMENT MOVEMENT**
- **→ MONITORING THE MONUMENT STABILITY**

3. ACTIONS IN PROGRESS

- EQUIPPING SITES WITH GEODETIC CONTROL POINTS IN ORDER TO MONITOR THE MONUMENT STABILITY
 - Fiducial pillars distributed around the monument
 - Regular observations campaigns
- GRASSE (SOUTHERN FRANCE) CHOSEN AS EXPERIMENTAL SITE
 - August 2013: first observations campaign
 - ⇒specification, method assessment, cost evaluation
 - before extending to the whole network
- ENSURING THAT EACH ANTENNA MEETS ITS SPECIFICATION
 - Perpendicularity antenna base / antenna axis
 - Alignment of the 2GHz connector on the antenna axis
 - = > new instrument optical access point
- STUDY OF THE MECHANICAL RESISTANCE OF THE 3 METALLIC SUPPORTS

3. ARP COORDINATES DETERMINATION

CASE 1 "RENOVATION (ANTENNA MOVE)":
TIE VECTOR WITH THE FORMER REFERENCE POINT

TIE VECTORS WITH AVAILABLE POINTS IN THE VICINITY:

- Co-location with other IERS techniques: terrestrial method
- IGS network: GPS method

HIGH PRECISION LOCAL TIE SURVEY

- Combining terrestrial measurements of angles, distances and height differences
- Objective : submillimetric tie vectors precision
- Contribution to ITRF
- 21 sites done in the last 3 years

