# DPOD2020: a DORIS extension of ITRF2020 for Precise Orbit Determination

<u>Guilhem Moreaux (CLS)</u>, Frank Lemoine (NASA), Nikita Zelensky (UMD), Alexandre Couhert (CNES) and John Moyard (CNES)













## **DPOD2020: Motivations**

The DPOD solutions were initiated to overcome some intrinsic drawbacks of each ITRF realization:

- Addition of new stations to the tracking network after the end of the ITRF defined time span (ex: SJVC, SVBC).
- □ Stations may be affected by position and/or velocity discontinuities that occur after the release of the ITRF realization (ex: COBB – M8.2 EQ in 2021/07/29).
- Positions and velocities may be improved by using data over a longer time span.
- □ Some problems in data processing might be found after the computation of the ITRF.





## **DPOD2020:** Realization

#### The DPOD2020:

- □ Is a DORIS cumulative position/velocity solution aligned to ITRF2020.
- □ Pure linear displacement model.

← To be uploaded on board of DORIS navigation software.

#### □ IDS CC discontinuity file

(105 discontinuities @ 42 sites - 52 with geophysical origin).

- □ Velocity continuity constraints.
- □ Stacking using DORIS-to-DORIS ties.
- Velocities of new sites with very short observation time spans are constrained to velocities deduced from GNSS/SLR/VLBI ITRF2020 colocated stations.



□ Updated twice a year.

DPOD2020 v01 includes 211 stations @ 88 sites. 46 of the 88 sites are free of any discontinuity.



## **DPOD2020 v01 vs ITRF2020**

Coordinate differences estimated at the mean epoch of each time segment of each station



### 75% of the 3D differences are smaller than the position errors. 80% of the 3D differences are smaller than 10 mm.



## DPOD2020 v01 vs DORIS-to-DORIS/GNSS surveyed ties

Coordinate differences estimated at the date of the surveyed ties GNSS station positions are estimated from ITRF2020 with PSD corrections.

#### **DORIS-to-DORIS ties**

#### **DORIS-to-GNSS ties**



80% of the DORIS-to-DORIS tie residuals are smaller than 20 mm. 80% of the DORIS-to-GNSS tie residuals are smaller than 23 mm.



## DPOD2020 v01 vs DPOD2014

Validation based on CNES DORIS CRYOSAT-2 Reduced Dynamic orbits The graphics show the differences of weighted DORIS RMS between both DPOD versions.

DPOD2020 - DPOD2014, weighted RMS by day (cm)





## DPOD2020 v01 vs DPOD2014



## Transition from DPOD2014 to DPOD2020 will have only negligible systematic altimeter satellite radial orbit impact.



## DPOD2020 v01 vs DPOD2020 v01P

DPOD2020 v01P stands for DPOD2020 v01 with estimation of periodic signals (annual, semi-annual, two first Jason's draconitics)

## Periodic signals over the entire time span of each site

Periodic signals before and after adding Jason-2 (2008.5)



Largest differences are for sites with strongest periodic signals and short time span. 80% of the position (resp. velocity) differences are smaller than 2.5 mm (resp. 0.8 mm/yr).



## DPOD2020: a DORIS extension of ITRF2020 for Precise Orbit Determination



□ DPOD2020 is a DORIS cumulative position/velocity solution aligned to ITRF2020.

DPOD2020 Version 1.0:

- $\checkmark$  Is based on the IDS combined solution from 1993.0 to 2022.0.
- ✓ Statisfied comparisons with ITRF2020 as well as with DORISto-DORIS and DORIS-to-GNSS surveyed ties.
- ✓ Shows slight better POD performance compared to DPOD2014 and ITRF2020.
- ✓ Will be released during AGU 2022.

□ Impact of estimating periodic terms is on the way even if the DPOD2020 will remain purely linear for operational reasons.