



European Space Agency

## → 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

#### **IDS WORKSHOP**

24–29 September 2018 Ponta Delgada, São Miguel Island Azores Archipelago, Portugal

# **Consistency of DORIS and GPS Assessments for the Real-time Global Ionospheric Maps**

Ningbo Wang<sup>1,2</sup> and Zishen Li<sup>1</sup>

Academy of Opto-Electronics, Chinese Academy of Sciences IAPG, Technical University of Munich

\*wangningbo@aoe.ac.cn





- Motivation and background
- RT-GIM generation with GNSS Technique
- RT-GIM validation with DORIS & GNSS Techniques
- Conclusions and future work





- Validation of ionospheric electron content models
  - Data-driven IONO models within Geodetic community

Using ground-based GNSS data to estimate the distribution of ionospheric total electron contents (TECs) in a thin-shell approximation

- Performance validation of IONO models with GNSS technique
  - Comparison w.r.t GNSS absolute TECs

**Slant/vertical absolute TECs**, using code leveled carrier phase, but affected *code biases*, *leveling errors*, *obs. noises*, *multipath effects* and *mapping errors* etc.

• Comparison w.r.t GNSS relative TECs

Relative TECs (rate of TECs), using dual-frequency carrier phase, concept of dsTEC

• Performance validation of IONO models with altimeter satellites

Vertical absolute TECs to altimeter orbit height, affected by bias calibration errors





## Comparison of diff. TEC sources for IONO model performance validation

|                     | GNSS TEC                      | GNSS dsTEC      | Altimeter vTEC       | DORIS dsTEC                   |
|---------------------|-------------------------------|-----------------|----------------------|-------------------------------|
| Obs.                | GF comb.+ CLC                 | GF Comb.+ Phase | GF Comb.             | GF Comb.+ Phase               |
| TEC types           | Absolute (V/S)                | Relative        | Absolute (V)         | Relative                      |
| Data coverage       | Mainly over continents        |                 | Only over oceans     | Globally uniform distribution |
| Assessment<br>types | Self- or external consistency |                 | External consistency | External consistency          |

#### Purposes of the research

- Extend the current methods for the independent validation of IONO electron content models (GNSSs, Altimeters -> DORIS)
- Routine retrieval of IONO info. from DORIS dual-freq. phase obs.
- Extension of DORIS applications in GNSS community, and as the first step by routine generation of DORIS relative TEC info. for ionosphere sensing





- CAS lonosphere Analysis Center of the IGS
  - Routine generation of rapid (carg) and final (casg) GIMs since 2014
  - New Ionosphere AC (1/7) of the IGS since 02/2016
  - Deliver to CDDIS on routine basis since 01/2017 (data: 1998-now)
  - Routine RT-GIM generation since 3<sup>rd</sup> quarter of 2017



- Tracking networks IGS + MGEX (> 300 sites)
- Observations GPS(L1+L2), GLONASS(L1+L2), BeiDou(B1+B3 since 2016)
- Global grids ΔLon X ΔLat (5.0 X 2.5) Temporal resolution 1 hour (30 mins since mid-2016)

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24–29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal





- Real-time GNSS data processing at CAS
  - IGS+MGEX (mainly) RT data streams
  - ~120 stations
  - supporting GPS+GLO+GAL+BDS
  - SW **IGGNtrip** (modified BNC, Win+Linux)







RT-IONO SW developed at CAS

CAS's Real-time Global TEC Map 2018-09-22 12:00:00 UT







- DORIS and GNSS dsTEC assessment
  - Input data: dual-frequency phase obs.
  - Retravel of IONO info: geometry-free combination
  - $L_I(t_k)$  denotes phase derived TEC at epoch  $t_k$
  - $L_I(t_{ref})$  denotes phase derived TEC with highest satellite elevation of the arc
  - dsTEC is calculated from

 $dsTEC(t_k) = L_I(t_k) - L_I(t_{ref})$ 

 Accuracy of dsTEC is much higher than that of the TECs derived from code leveled carrier phase technique



illustration of dsTEC concept in a continuous arc of carries phase observations





## Details in calculating GNSS (GPS) and DORIS (Jason-3) dsTEC

| Terms                                        | GPS dsTEC                                                                                                                                         | Jason-3 DORIS dsTEC                       |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Obs. Comb.                                   | L4 (geometry-free comb. of dual-freq. phases)                                                                                                     |                                           |  |
| Obs. interval                                | 30 s                                                                                                                                              | 10 s                                      |  |
| Cycle slip detection                         | IONO residual algorithm +<br>MW comb.                                                                                                             | IONO residual algorithm +<br>3σ criterion |  |
| Cycle slip repair                            | NO                                                                                                                                                |                                           |  |
| Obs. noise                                   | ignored                                                                                                                                           |                                           |  |
| Satellite elevation cut-off                  | 10°                                                                                                                                               |                                           |  |
| Max satellite elevation within each arc      | No detection                                                                                                                                      | 20°                                       |  |
| Remarks for Jason-3<br>DORIS data processing | <ul> <li>* Geometry corrections in satellite and receiver parts are applied</li> <li>** Jason-3 TECs NOT converted to GPS orbit height</li> </ul> |                                           |  |





- Experimental setup
  - Time span: 001/2018-060/2018
  - Selected sites: 14, globally distributed
  - GIMs: CRTG (real-time, 5 mins), CASG (final, 30 mins) & IGSG (final, 2 hours)
  - TEC references: GPS & Jason-3 DORIS dsTEC, GPS vTEC (bias-free)







### Comparison of GIMs w.r.t GPS (left) and DORIS (right) dsTEC



- TEC sources: GPS dsTEC
- Time: UT 0:00-04:40, 001/2018
- Data interval: 30 s
- GPS satellite: G23

- TEC sources: DORIS dsTEC
- Time: UT 17:00-17:25, 001/2018
- Data interval: 10 s
- Altimeter satellite: Jason-3





• Comparison w.r.t GPS dsTEC







• Comparison w.r.t Jason-3 DORIS dsTEC







• Relationship between GPS and Jason-3 DORIS dsTEC errors





## Comparison of RT and final GIMs w.r.t diff TEC sources (001-060, 2018)

|                   |      | CRTG* | CASG* | IGSG* |
|-------------------|------|-------|-------|-------|
| w.r.t GPS vTEC    | Bias | -0.11 | -0.09 | 0.64  |
|                   | Std  | 1.68  | 0.83  | 1.03  |
|                   | Rms  | 2.17  | 1.22  | 1.51  |
| w.r.t GPS dsTEC   | Bias | 0.31  | 0.26  | 0.45  |
|                   | Std  | 2.36  | 1.77  | 1.86  |
|                   | Rms  | 2.45  | 1.86  | 1.97  |
| w.r.t DORIS dsTEC | Bias | 0.37  | 0.34  | 0.63  |
| (Jason-3)         | Std  | 2.64  | 2.20  | 2.22  |
|                   | Rms  | 2.69  | 2.26  | 2.34  |

(\*Unit: TECu)





- Extension of current method to validate the performance of IONO electron content models using DORIS data (in addition to GNSS techniques)
- Easy handling of DORIS carrier phase measurements compared to that of GNSS
- Quality of DORIS-derived dsTEC info comparable to that of GPS
- Validation of CAS's real-time (URTG) and final (CASG) GIMs w.r.t dsTEC sources derived from GPS and Jason-3 DORIS phase observations
- RMS of URTG compared to GPS and DORIS dsTEC are 2.45 and 2.69 TECu, respectively
- Advantages of DORIS technique (site distribution, frequencies, independent assessment)





- **Routine generation** of relative IONO TECs using dual-frequency phase observations of DORIS-series missions
- Definition of **DIRIS TEC file format (internal)**, and make them available to users who are interested via CAS FTP archive
- Application of DORIS data in ionosphere sensing
  - Ionospheric irregularity monitoring (RT or NRT)
  - Global ionospheric map generation (TEC modeling)





# **Thanks for your attention**

----

If any questions, please fell free to contact: wangningbo@aoe.ac.cn / ningbo.wang@tum.de

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

24-29 September 2018 | Ponta Delgada, São Miguel Island | Azores Archipelago, Portugal