

European Space Agency

→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

IDS WORKSHOP

24–29 September 2018 Ponta Delgada, São Miguel Island Azores Archipelago, Portugal

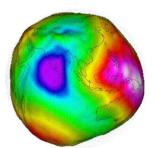
The new time-variable gravity field model for POD of altimetric satellites based on GRACE+SLR RL04 from CNES/GRGS

3)

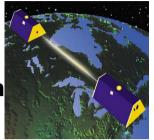
<u>J.-M. Lemoine</u>⁽¹⁾, S. Bourgogne⁽²⁾, R. Biancale⁽³⁾, F. Reinquin⁽¹⁾

- 1) CNES/GRGS, Toulouse, France
- 2) Géode & Cie, Toulouse, France / Stellar Space Studies, Toulouse, France
 - GFZ, Oberpfaffenhofen, Germany

Introduction



- Precise orbit determination is a key element in the overall accuracy of the altimetric measurements.
- Since 2002, thanks to the GRACE (and GOCE) missions, we have now a very good knowledge of the Earth gravity field and its time evolution.
- Based on 14 years of GRACE data (2002.5-2016.5), 3 years of GOCE data and 33 years of SLR data (1985-2018), the EIGEN-GRGS.RL04.MEAN-FIELD is the gravity model that is proposed for the GDR-F standards.
- It contains a time-variable gravity (TVG) part until degree and order 90, and a static part coming from the model GOCE-DIR5 up to degree and order 300.
- The TVG part is modeled for each year between August 2002 and June 2016 as an annual bias + slope + annual and semi-annual periodic components.
- For the <u>low degrees</u> of the gravity field, the TVG part <u>prior to August 2002</u> will either :
 - Be modeled, <u>for degree 2 only</u>, by SLR data from January 1985 to July 2002
 - Or be modeled in a more ambitious way thanks to a "mascon" approach (see John Moyard's presentation, following talk).


- K-Band Range-Rate data (σ_{apriori} = .1 μm/s)
- GPS data (1-day arcs, $\sigma_{code} = 80$ cm, $\sigma_{phase} = 20$ mm / 30s resolution
- ACC and SCA data (KBR CoP coordinates solved once / day)

SLR

- Lageos1/2 data (10-day arcs, $\sigma_{a priori} = 6 \text{ mm}$)
- Starlette/Stella data (5-day arcs, $\sigma_{a priori} = 10$ mm)
- Physical parameters present in the normal equations
- Gravity spherical harmonic coefficients complete to degree and order 90 (truncated to 30 for LAGEOS and 40 for GPS data)
- Ocean tides s. h. coefficients for 14 tidal waves with maximum degree/order ≤ 30 (not used yet)

Data processing in the RL04 reprocessing (June – December 2017)

Models used:

Dynamical models

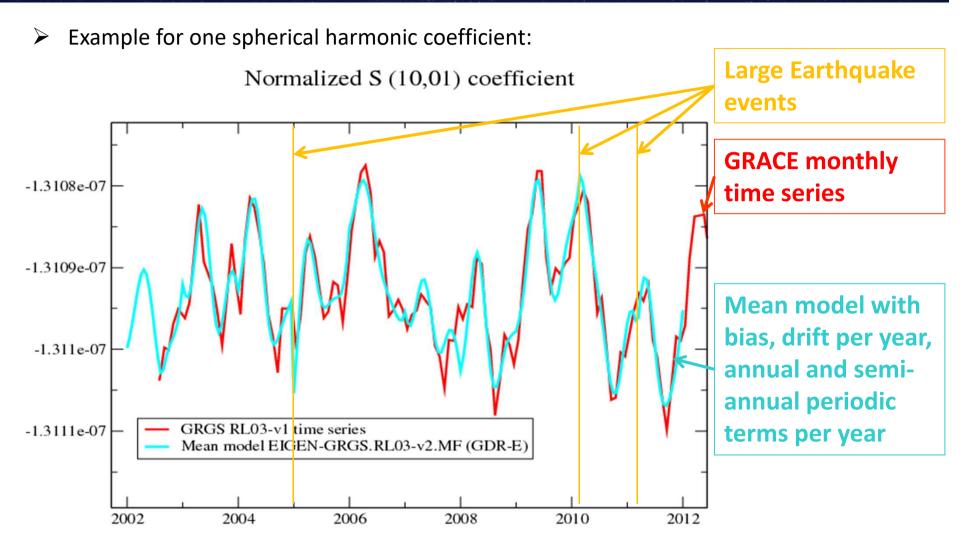
Gravity	EIGEN-GRGS.RL03-v2.MEAN-FIELD	
Ocean tide	FES2014 (Legos)	
Atmosphere	3-D ECMWF ERA-interim pressure grids / 3 hrs	
Ocean mass model	TUGO (Legos) / 3 hrs	
Atmospheric tides	\rightarrow Not necessary because of the 3 hrs dealiasing time sampling	
3 rd body	Sun, Moon, 6 planets (DE405)	
Solid Earth tides	IERS Conventions 2010	
Pole tides	IERS Conventions 2010	
Non gravitational	Accelerometer data (+biases and scale factors)	

Geometrical models

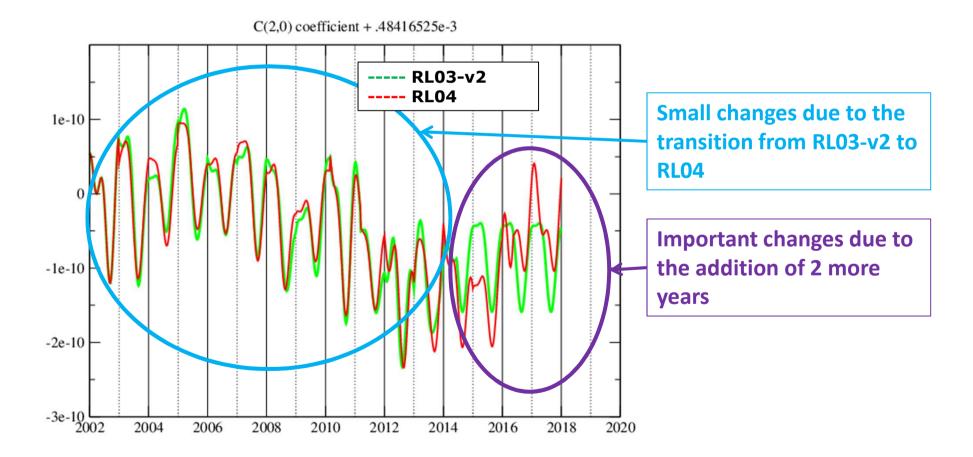
SLR stations	ITRF2014 coordinates
GPS	IGS Repro-2 orbits & clocks

Other models

Hydrology	Takan into account by the a priori gravity field	
Glacial Isostatic Adjustment	Taken into account by the a priori gravity field	


From GRACE monthly solutions to mean gravity models

- Using directly GRACE/GRACE-FO monthly solutions is not appropriate for POD because of:
 - Data gaps in the GRACE time series (e.g. after 2011 and between GRACE and GRACE-FO)
 - > The problem of extrapolation before 2002 and after 2016
- Mean models are now generated from time series
 - Fitting each series of monthly spherical harmonic coefficients by a set of 6 parameters :
 - > Yearly bias and slope : piecewise linear function except in case of ...
 - Jumps caused by big earthquakes (so far : Sumatra/2005.0, Concepcion/2010.2 and Tohoku/2011.2)
 - Annual and semi-annual sine/cosine functions (with continuity constraints at hinge epochs)
 - It means 750 000 coefficients for a 90x90 spherical harmonic model


RL04 mean model

Mean model: from RL03-v2 to RL04

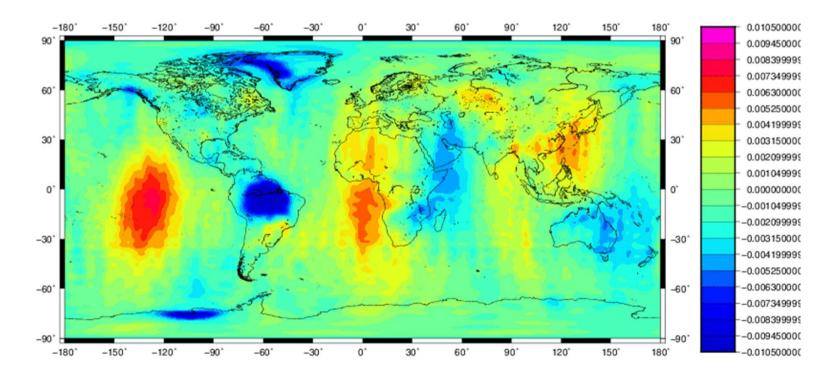
- > The new mean field updates the previous one over 2 years: mid-2014 to mid-2016.
- > Example for the C(2,0) spherical harmonic coefficient:

esa

European Space Agency

Update of the mean model from -v2 to

Extrapolation vs. real data after 2 years: difference between mean-field –v2 and mean field –v3 at mid-2016

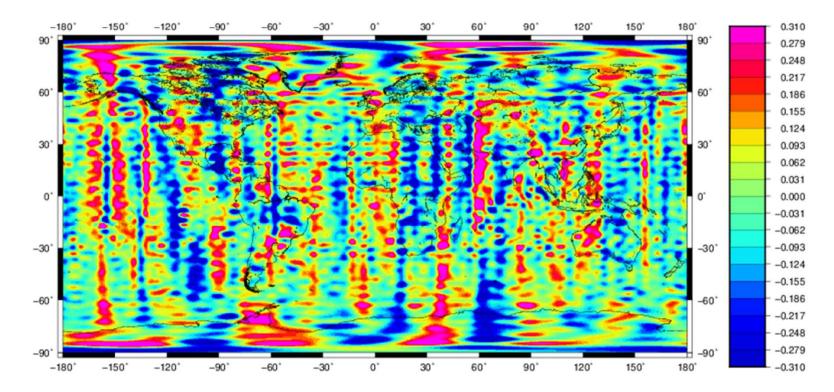

Geoid comparison at date: April 1st, 2016

EIGEN-GRGS.RL03-v3.MEAN-FIELD - EIGEN-GRGS.RL03-v2.MEAN-FIELD

degree 0002 to 0080

(unit : m)

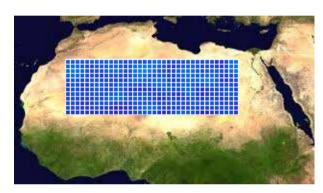
(mean: 0.0000 / st.dev: 0.0027 / min: -0.0185 / max: 0.0079)


Improvement of RL04 wrt RL03-v2

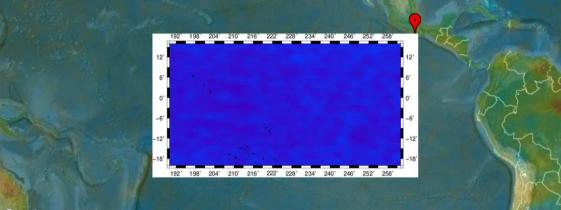
Equivalent Water Height comparison: 20170515 olution-RL04 test-6 w/o spher. cap - EIGEN-GRGS.RL03-v2.MF.MSE degree 0002 to 0090

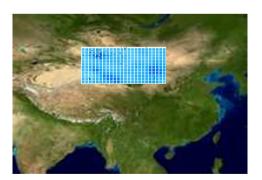
(unit : m)

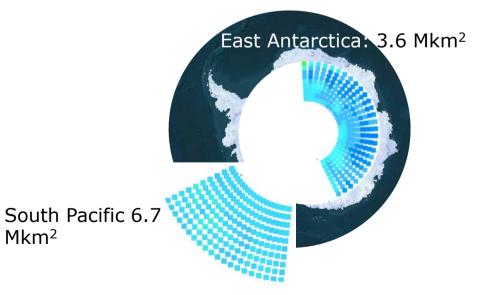
(mean: -0.0000 / st.dev: 0.1392 / min: -0.6185 / max: 0.7640)



→ 25 YEARS OF PROGRESS IN RADAR ALTIMETRY SYMPOSIUM

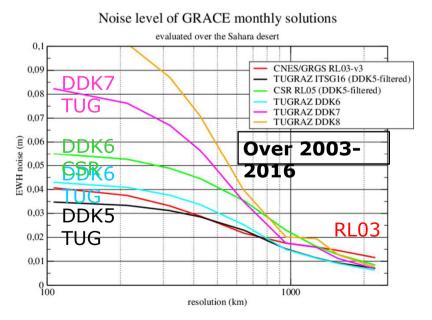

RL03/RL04 evaluation

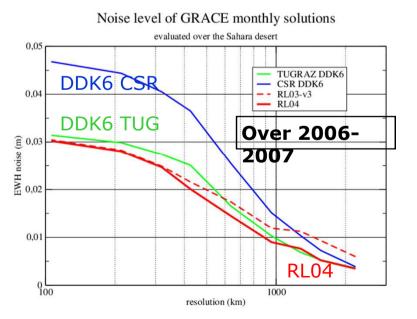

Noise assessment can be made in areas with no or very little mass variations: Sahara and Gobi deserts, East Antarctica, South and Equatorial Pacific


Sahara desert: 2.2 Mkm²

Equatorial Pacific: 31.6 Mkm²

Gobi desert: 1.6 Mkm²

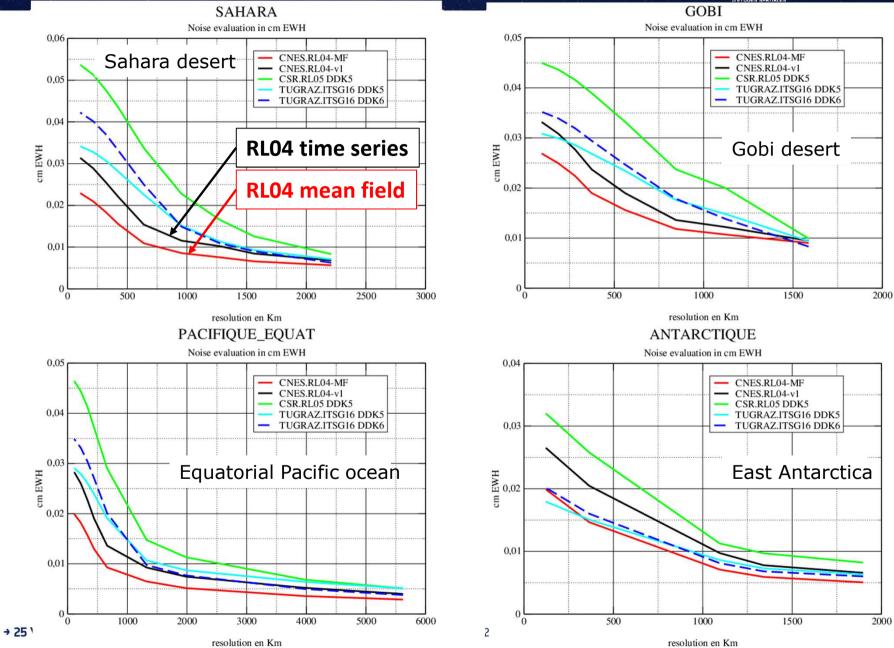



Noise assessment over the Sahara

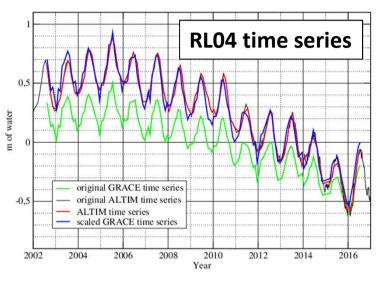
The Sahara desert shows very little hydrological variations. We have delimited a rectangular zone of 2.2 Mkm² where almost no gravity variation is suspected (except a small depletion of 1.3 mm/yr in South Libya).

It is hence well dedicated to control the quality of gravity field variation models. The surface is first divided in 2 deg.*2 deg. blocs (⇔ degree/order 90), then averaged in blocs of larger size up to 20 deg.*20 deg. Drift and annual/semiannual variations are fitted a priori.

Different time-varying gravity models with various DDK filters (Kusche et al.) are compared spectrally in this way from 100 km to 2200 km.



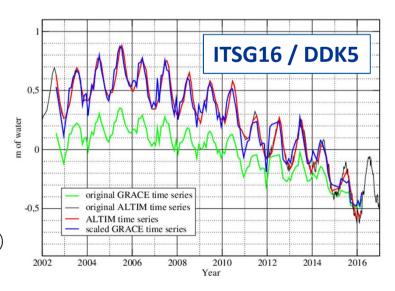
esa


Noise assessment over "deserts"

COLORS CENTRE NATIONAL Défundes Santales European Space Agency

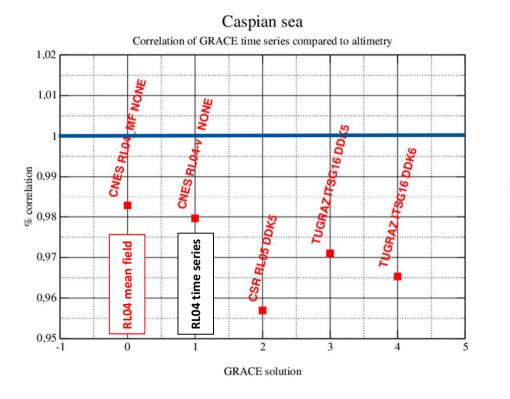
Signal assessment by comparison to altimetry (Caspian Sea)

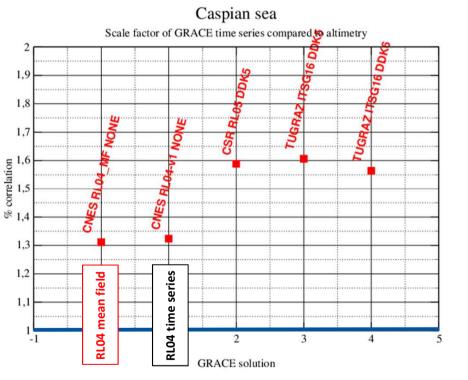
THE NATIONAL UNDES STATIALES EUROPEAN Space Agency


Caspian sea

Altimeter time series from Hydroweb (https://sso.theia-land.fr)

RL04 mean field m of water original GRACE time series -0,5 original ALTIM time series ALTIM time series scaled GRACE time series 2002 2004 2006 2008 2010 2012 2014 2016 Year


Caspian sea



Signal assessment by comparison to altimetry (Caspian Sea)

es sational spatiales European Space Agency

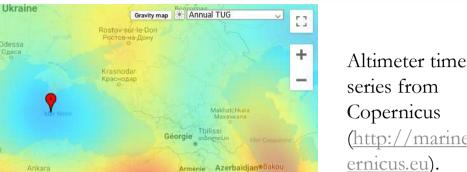
CORRELATION

SCALE FACTOR

Signal assessment by comparison to altimetry (Black Sea)

Roumanie

Grece


Bucarest

Moldavie

Chisinăue Odessa

Turquie

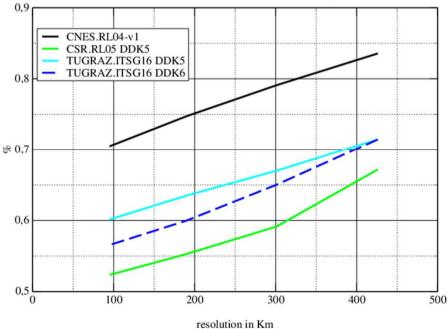
Données cartographiques ©2018 GeoBasis-DE/BKG (©2009), Googla, Inst. Geogr. Nacional, Mapa GISrael, ORION-ME 200 km

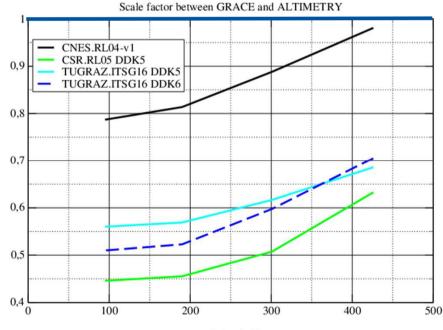
Copernicus (http://marine.cop ernicus.eu).

esa

European Space Agency

CORRELATION


Plan


Satellite

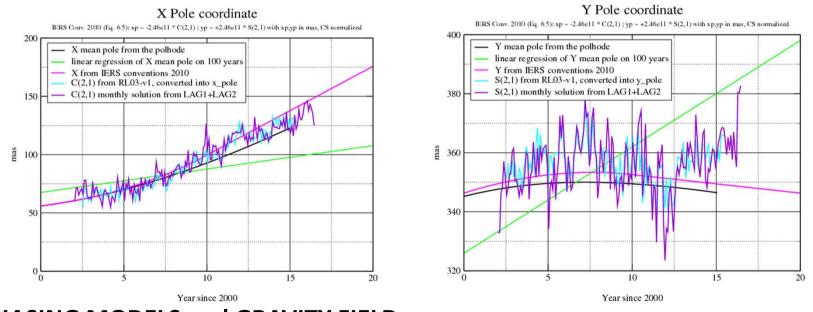
Hongrie

Licanos Albani

Correlation between GRACE and ALTIMETRY, in %

Conditions d'utilisation

SCALE FACTOR


resolution in Km

Need for consistency

MEAN POLE MODEL and GRAVITY FIELD

- When using the C(2,1)/S(2,1) values of a gravity field model, one must adopt the same mean pole convention as the one used for the computation of the model.
- CNES/GRGS is using the mean pole of the **IERS2010 conventions**. If the conventions change for a **linear mean pole**, then the C(2,1)/S(2,1) coefficients of the mean gravity model will have to be adapted to this new convention.

DEALIASING MODELS and GRAVITY FIELD

 The same goes for the dealiasing models : CNES uses 3-hour ERA-Interim & TUGO models → the same models should be used for POD

Conclusions and perspectives

- The new mean gravity field model based on CNES/GRGS RL04 is available for the GRACE period (2002 2016)
- Validation tests (noise and signal w.r.t. altimetry) show a good performance of this RL04 mean field
- Extrapolated periodic terms (before August 2002 and after May 2016) are based on global fits of monthly coefficients over 14 years of GRACE data
- It still needs to be completed before and after the GRACE period by additional data coming from SLR data (and DORIS data ?) in order to follow the long-term evolution of the lower degrees
- Possibly an accurate modeling of only the degree 2 through SLR and DORIS data is sufficient to achieve good POD performances
- When doing POD one must ensure that the models used are not only "good" but also <u>consistent</u> !!!

esa

European Space Agency