Improvement of the CNES/CLS IDS Analysis Center solution for the contribution to the next ITRF

Hugues Capdeville, Jean-Michel Lemoine
CNES/CLS AC (GRG)
Outline

- CNES/CLS (grg) AC status

- Introduction of Sentinel-3B in the CNES/CLS processing chain
 - Processing strategy
 - OPR and DORIS RMS of fit
 - Independent SLR RMS of fit
 - Orbit comparison

- Improvement of the CNES/CLS IDS Analysis Center solution
 - Geocenter and scale of single satellite solutions

- Conclusions and perspectives
Status of the routine DORIS data processing

- We processed DORIS2.2 and RINEX data until August 2018

- **New serie grgwd41**
 ITRF2014 configuration

List of last additions:
- Introduction of Jason-3 and Sentinel-3A (RINEX data) in the GRG DORIS processing
- Switch to the ITRF/DPOD2014
- DORIS-only orbits processing and evaluation by SLR processing
- Strategy to mitigate the SAA impact for Jason-2 and Jason-3
 - on the orbit (adjusting of frequency Polynomial on SAA station per pass)
 - on the positioning (renaming of SAA stations)
- Remove the DORIS scale jump in 2012
 - use the new position of the HY-2A CoM given by the Chinese Project
 - make our own pre-processing when using Doris2.2 data

- Introduction of Sentinel-3B (RINEX data) in the GRG DORIS processing

- We provided Sentinel3-A DORIS-only orbits to CPOD QWG since Sep. 2017
Introduction of Sentinel-3B in the CNES/CLS processing chain

Processing strategy
(we took the IERS conventions and the IDS recommendations)

<table>
<thead>
<tr>
<th>Software</th>
<th>GINS/DYNAMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIS data</td>
<td>RINEX 3.0 phase measurement converted to DOPPLER</td>
</tr>
<tr>
<td>Station Coordinates</td>
<td>ITRF2014 (DPOD2014)</td>
</tr>
<tr>
<td>Gravity Field</td>
<td>EIGEN-GRGS.RL03-v2.MEAN-FIELD with mean slope extrapolation</td>
</tr>
<tr>
<td>DORIS Troposphere</td>
<td>VMF1 + one gradient per station in North & East directions</td>
</tr>
<tr>
<td>Attitude Model</td>
<td>nominal law like Envisat</td>
</tr>
<tr>
<td>Surfaces Forces & Estimated Parameters</td>
<td>Box-wing model for solar radiation, drag, Albedo and IR</td>
</tr>
<tr>
<td></td>
<td>Radiation pressure scale coefficient:</td>
</tr>
<tr>
<td></td>
<td>1 coef/day but strongly constrained to: 0.99 for Jason and 1.0 for Sentinel-3</td>
</tr>
<tr>
<td></td>
<td>OPR empiricals: 2 coeff cos-sin/orbital period in normal direction and 2 coeff cos-sin/orbital period in tangential direction (per arc)</td>
</tr>
<tr>
<td></td>
<td>Drag coefficients adjusted: 1 coef/4 hours for Sentinel-3 and 1 coef/half day for Jason</td>
</tr>
</tbody>
</table>

Time span processing
From June to end August 2018
3.5-day arcs with a cut-off angle of 12°
POD Summary

DORIS RMS of fit and SLR external validation

OPR Acceleration Amplitude:
Along-track and Cross-track / Radiation pressure coefficient

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>DORIS RMS (mm/s)</th>
<th>SLR RMS (cm)</th>
<th>OPR amplitude average ((10^{-9} \text{ m/s}^2))</th>
<th>Solar radiation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentinel-3B</td>
<td>0.38</td>
<td>1.5</td>
<td>1.8 Along-track</td>
<td>2.3 Cross-track</td>
</tr>
<tr>
<td>Sentinel-3A</td>
<td>0.37</td>
<td>1.4</td>
<td>2.3 Along-track</td>
<td>1.9 Cross-track</td>
</tr>
</tbody>
</table>

*from June 2016 to August 2018 for Sentinel 3A
from June to August 2018 for Sentinel 3B*

- **Solar radiation coefficient adjusted overall processing period**
- **For the two directions, Along-track and Cross-track, the mean amplitudes are lower than **4x10^{-9} \text{ m/s}^2**, reflecting a satisfying level in the modeling of the satellite macromodels and the attitude law.
Introduction of Sentinel-3B in the CNES/CLS processing chain

- Comparison to CNES (GDR-E) / Copernicus (CPOD) orbits
- Independent SLR RMS of fit

Sentinel-3A

Sentinel-3B

- The SLR RMS residuals on Sentinel3-A and Sentinel-3B orbits are at a good level.
- The level is comparable to the others orbits evaluated, CNES-GDR-E and CPOD.
Introduction of Sentinel-3B in the CNES/CLS processing chain

- Comparison to CNES (GDR) / Copernicus (CPOD) orbits
 Sentinel-3B orbit differences

 RMS of orbit differences (in cm)

 ![RMS comparison graphs](image)

 Mean of orbit differences (in cm)

 ![Mean comparison graphs](image)

- The agreement is good but there is an along-track bias (~ -7 mm) vs GDR-E orbit.
- The comparison to CPOD orbit gives better results
Add Sentinel-3 single satellite solutions in the multi-satellite solution
Multi-satellite Solution (weekly) compared to DPOD2014 (from June 2016 to August 2018)
Solution 1: Jason-2 + Cryosat-2 + HY-2A + Saral + Jason-3
Solution 2: Solution 1 + Sentinel-3A + Sentinel-3B

- The addition of Sentinel-3 solutions has not a big impact on the multi-satellite
Improvement of the CNES/CLS IDS Analysis Center solution

- **Context**
 The DORIS scale factor and geocenter is the combination of each single DORIS satellite solutions. Previous studies showed that single satellite solutions can have some large scale or geocenter values, such as the HY-2A scale. We have already identified a high value for Tz translation for several satellites.

- **Determination of the single satellite solutions**
 Comparison of each solution to DPOD2014 (computed by CATREF)
 Scale Factor and Geocenter from single satellite solutions

![Graphs showing Sentinel-3A&3B Scale and geocenter](image)

A high bias in Tz ~ 6 cm
Improvement of the CNES/CLS IDS Analysis Center solution

- **Tz bias origin**
 Could be related to a wrong position in the crosstrack direction for DORIS receiver phase center (CoP) or for Center of gravity (CoG)

- **Estimation of the distance between the satellite CoG and DORIS CoP**
 - Cross-track offset for Sentinel-3

Component	Original value (m)	Estimated value (m)	Offset (cm)
X (along-track)	+1.570	+1.570	no
Y (cross-track)	+0.073	+0.093	+2
Z (radial)	+0.760	+0.760	~0.1

- **Impact of the use of the DORIS CoP value estimated**
 Use new cross-track value DORIS Phase center position: \(Y = Y_i + 2 \) cm
 - **Impact on the orbit**
 No significantly impact:
 The orbit differences are very small in the three components
 DORIS RMS of fit very slightly lower

<table>
<thead>
<tr>
<th>SATELLITE</th>
<th>Sentinel-3A</th>
<th>Sentinel-3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIS RMS</td>
<td>0.36295 / 0.36275</td>
<td>0.38181 / 0.38173</td>
</tr>
</tbody>
</table>
Impact of the use of the DORIS CoP value estimated

- Impact on the positioning
- Scale Factor and Geocenter

Sentinel-3A

Sentinel-3B

when we use the CoP estimated

- The Tz bias vanishes
- Solution is more consistent with the ITRF-DPOD2014

IDS WS September 2018
Impact of the use of the DORIS CoP value estimated

- Impact on the positioning

Multi-satellite satellite Solution compared to DPOD2014 (computed by CATREF)

Differences between the solution with original and estimated DORIS CoP

Solution=Jason-2 + Cryosat-2 + HY-2A + Saral + Jason-3 + Sentinel-3A + Sentinel-3B

In red multi-satellite solution with COP correction for Sentinel satellites
Improvement of the CNES/CLS IDS Analysis Center solution

- Estimation of the distance between the satellite CoG and DORIS CoP
 - Cross-track offset for ENVISAT

<table>
<thead>
<tr>
<th>Component</th>
<th>Original value (m)</th>
<th>Estimated value (m)</th>
<th>Offset (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (cross-track)</td>
<td>-7.052</td>
<td>-7.077</td>
<td>-2.5</td>
</tr>
<tr>
<td>Y (along-track)</td>
<td>-1.085</td>
<td>-1.085</td>
<td>no</td>
</tr>
<tr>
<td>Z (radial)</td>
<td>-1.725</td>
<td>-1.725</td>
<td>~-0.1</td>
</tr>
</tbody>
</table>

- Impact of the use of the DORIS CoP value estimated

- No significantly impact on the orbit
 - The orbit differences are very small in the three components
 - DORIS RMS of fit very slightly lower
- The Tz bias vanishes
- Solution is more consistent with the ITRF-DPOD2014

When we use the CoP estimated
Conclusions and Perspectives

- **Introduction of Sentinel-3B in the CNES/CLS AC processing chain**
 The POD results are of good quality but the DORIS RMS are still higher than the other DORIS satellites. The orbit comparisons give good agreement with CNES GDR-E and CPOD orbits.

- **Improvement of the CNES/CLS IDS Analysis Center solution**
 - Strategy to mitigate the SAA impact for Jason-2 and Jason-3
 - on the orbit (adjusting of frequency Polynomial on SAA station per pass)
 - on the positioning (renaming of SAA stations)
 - Remove the DORIS scale jump in 2012
 - use the new position of the HY-2A CoM given by the Chinese Project
 - make our own pre-processing when using Doris2.2 data
 - Analyze Geocenter and Scale factor from single satellite solutions (in progress)
 - Estimation of the distance between the satellite CoG and DORIS CoP
 - done for Sentinel satellites and HY2A
 - Same analysis to be done for the other DORIS satellites
 - An IDS working group could analyze the impact of the cutoff angle/ data down-weighting law at low elevation / mapping function of the tropospheric correction on the scale factor and vertical positioning

- **Using quaternions for the s/c body and solar array for Jason-2 and Jason-3**
 (in progress)

- **Implementation of models recommended by IERS**
 - as linear mean pole model, FES2014, ...