

IDS Workshop Precise Orbit Modeling and Precise Orbit Determination

SENTINEL-3A USO OBSERVED USING GNSS MEASUREMENTS

E. Jalabert, F. Mercier, A. Couhert, J. Moyard, S. Houry⁽¹⁾

October 31st, 2016

La Rochelle, FRANCE

(1) CNES POD Team, Toulouse, France

• INTRODUCTION

- CLOCK OBSERVED USING GPS
- COMPARISON TO DORIS ESTIMATED CLOCK
- USE OF GPS OBSERVED CLOCK IN DORIS
 COMPUTATION

INTRODUCTION

Sentinel3A:

- Launched on the 16th of February 2016
- On-board Ultra Stable Oscillator (USO) used by both DORIS and GNSS receiver
- Low Earth orbiter -> passes through the South Atlantic Anomaly (SAA, a region with higher level of radiation)

Clock computation :

- GPS system : enough measurements at each epoch to estimate the on-board clock
- DORIS system : on-board clock estimated by a 3rd order polynomial, using master beacon measurements (5 stations), over 9 days

SAA effects :

- USO performances is degraded when passing through SAA : fast variation of frequency
- On Sentinel3A : degradation is not obvious when studying global metrics (RMS residuals over a cycle, ...) BUT a close up on the few DORIS passes over SAA shows that the DORIS USO is indeed perturbed.

Data used :

• From cycle 2 to cycle 10 (i.e. from the 21st of March, 2016 to the 11th of June, 2016)

GPS CLOCK : RECONSTRUCTION OF A CONTINUOUS CLOCK

Use of daily rinex files : daily clock bias reset to stay close to GPS reference time (ground segment processing)

Reconstruction of GPS clock using frequency information : clock increments

GPS CLOCK : RECONSTRUCTION OF A CONTINUOUS CLOCK

Continuous GPS clock (cycle 7) : polynomial behaviour

COPS

GPS CLOCK : HIGH FREQUENCY VARIATIONS

Continuous GPS clock without 4th order polynomial (cycle 7)

GPS clock (s) without 4th order polynomial

Cones

GPS CLOCK : HIGH FREQUENCY VARIATIONS : RELATIVITY

Continuous GPS clock without 4th order polynomial (cycle 7) : relativistic effects

No relativistic correction on Sentinel3A receiver in our software

31/10/2016

7

GPS CLOCK: **HIGH FREQUENCY VARIATIONS : RELATIVITY**

Continuous GPS clock (cycle 7) without 4th order polynomial with relativistic correction :

1.50e-08 • 1.00e-08 5.00e-09 0.00e+00 • -5.00e-09 correction -1.00e-08 Passes over SAA -1.50e-08-127 126 128 129 130 131 132 133 134 135 136 137 Days in year 2016

GPS clock (s) without 4th order polynomial, with relativistic correction

- Best observation of OUS
- BUT : no relativistic correction in DORIS computation
- Therefore the GPS clock used in DORIS computation is the one without relativistic

GPS CLOCK : OVER 10 CYCLES

Continuous GPS clock (cycles 2 to 12) without 4th order polynomial with relativistic correction :

GPS clock (ns) without 4th order polynomial, with relativistic correction

GPS CLOCK : FREQUENCY NOISE ANALYSIS

Continuous GPS clock (cycle 7) without 4th order polynomial with relativistic correction : CLOCK VARIATION (120 seconds intervals)

GPS CLOCK : COMPARISON TO DORIS CLOCK

- Estimation of a bias to align GPS clock on the DORIS clock
- DORIS-GPS signal 3rd order polynomial behaviour

DOR – GPS clocks (s)

Coes

GPS CLOCK : COMPARISON TO DORIS CLOCK

- Estimation of a 3rd degree polynomial on the GPS clock
- DORIS and GPS clocks are different : time tagging error ≈ 4e⁻⁷s (RMS pseudo range residuals : 2,5 km ≈ 80e⁻⁷s)

 \rightarrow no impact on orbit

Clocks (s) without 3rd order polynomial

GPS CLOCK : POLYNOMIAL BEHAVIOUR

What strategy to perform DORIS time tagging ?

GPS clock can be well observed
 N=2 : 3rd degree signature left : 6e⁻⁸s

- DORIS time tagging error on the 3rd degree polynomial (previous slide) : 4e⁻⁷s
- When performing DORIS time tagging : Maybe there is no need to estimate a 3rd degree order polynomial.
 2nd degree polynomial would be enough.

GPS clocks (s) without N order polynomial

GPS CLOCK : SAA IMPACT

14

31/10/2016

Ccnes

GPS CLOCK : SAA IMPACT

Estimation of the residuals curvature (600 s duration) normalized in [-1,1] ———— very clear SAA effect on the USO //

see F. Mercier presentation, IDS AWG, May 2016

31/10/2016

Cnes

15

- DORIS computation : need of an on board clock model
- Traditionnaly : use of a 3rd degree polynomial identified using pseudo range only, over 9 days, on time beacons
- In the next slides : use of the GPS clock instead (interpolated on DORIS measurements epochs) (OUS observed using GPS measurement)
- Observed impact on Doppler phase residuals and phase residuals

Doppler phase residuals = Increment of phase measurements, on the ionosphere-free combinaison frequency

CORRECTION OF SAA EFFECT ON DORIS PHASE MEASUREMENTS (2/4)

Doppler phase residuals = Increment of phase measurements, on the ionosphere-free combinaison frequency

cnes

CORRECTION OF SAA EFFECT ON DORIS PHASE MEASUREMENTS (3/4)

Doppler phase residuals = Increment of phase measurements, on the ionosphere-free combinaison frequency

es

CORRECTION OF SAA EFFECT ON DORIS PHASE MEASUREMENTS (4/4)

No impact on orbit

IMPACT ON STATION POSITIONING (1/2)

¢ cnes

20

IMPACT ON STATION POSITIONING (2/2)

31/10/2016

CONCLUSIONS

- OUS frequency can be observed using GPS measurements
- \rightarrow DORIS time tagging precision can be evaluated
- SAA degradation visible on the GPS clock
- SAA degradation not easily observed on Doppler phase residuals (when zoomed in, « V » shaped residuals)
- But SAA degradation very easily spotted on phase residuals (large signature up to 8 cm, instead of 2-3 cm)
- Using GPS clock in DORIS computation enables to correct degradations. Sentinel3A : no impact on orbit
- Vertical station positionning : not significant impact

BACK UP SLIDES

DORIS TIME TAGGING

Clocks (s) (bias corrected) without 3rd order polynomial ajusted on DORIS clock

Cones

CORRECTION OF SAA EFFECT ON DORIS PHASE MEASUREMENTS (4/5)

GPS clocks (ns) without 4th order polynomial, with relativistic correction

Cnes

ORBIT DIFFERENCE

¢ cnes

26