

SOLAR RADIATION PRESSURE MODEL FOR ALTIMETER SATELLITES

ANALYSIS OF SARAL SURFACE ACCELERATIONS

Eva Jalabert, Flavien Mercier, Alexandre Couhert CNES

28/10/2014

IDS Workshop, Constance, Germany

• INTRODUCTION

- JASON 2 RESULTS
- SARAL ANALYSIS
 OUT-OF-PLANE BEHAVIOUR
 IN-PLANE BEHAVIOUR
- CONCLUSION

Ccnes

INTRODUCTION (1)

Solar Radiation Pressure (SRP):

Usual approach :

- Pre-launch model : constructed using thermo-optical description of the satellite (absorptivity K_a , specular refraction K_s and diffuse refraction K_d) and thermal control
- Calibration by applying a global SRP coefficient identified during commissioning
- 1/rev empirical accelerations in T (along-track) and N (cross-track) direction (every 24h)

INTRODUCTION (2)

Empirical along-track accelerations (referenced : PSO=90°)

Objective :

- β-dependent patterns are observed^[1] : probably due to SRP mismodelling
- Improve SRP model

[1] "A review of some systematic errors observed in the Precision Orbit Determination of recent DORIS satellites", Cerri & al. IDS Workshop 2012.

5

• INTRODUCTION

- JASON 2 RESULTS
- SARAL ANALYSIS
 OUT-OF-PLANE BEHAVIOUR
 IN-PLANE BEHAVIOUR
- CONCLUSION

JASON 2 FINAL UPDATE

Empirical acceleration (reference : sub-solar point)

Jason 2 initial model, complete with initial solar array model Jason 2 updated model with new solar array values

Courtesy of Flavien Mercier, see OSTST presentation on Wednesday (29/10/14)

7

• INTRODUCTION

- JASON 2 RESULTS
- SARAL ANALYSIS
 OUT-OF-PLANE BEHAVIOUR
 IN-PLANE BEHAVIOUR
- CONCLUSION

Ccnes

DEFINITION (1)

SARAL/AltiKa : Heliosynchronous orbit (i=98,55°)

Definition of $\boldsymbol{\beta}$

Cones

Sub-solar point

DEFINITION (2) EVOLUTION OF THE SUB-SOLAR POINT POSITION

Evolution of the sub-solar point

- Steady behaviour for most values of β
- Singularity when β close to 90°, larger values for sub-solar point variations
- But OK ← no θ dependancy for RTN frame

INITIAL RESULTS (1) EMPIRICAL 1/REV ACCELERATION ANALYSIS

Coes

cnes

• INTRODUCTION

- JASON 2 RESULTS
- SARAL ANALYSIS
 OUT-OF-PLANE BEHAVIOUR
 IN-PLANE BEHAVIOUR
- CONCLUSION

OUT-OF-PLAN BEHAVIOUR (1) NORMAL BIAIS

Normal bias :

A normal bias of 5 cm has been observed (equivalent magnitude : 5.10⁻⁸ m/s² *) May be due to CoM misalignment or SRP mismodelling Corresponds to half of the cross-track SRP acceleration

* « Status of GDR orbites for ocean topography missions and prospects for future improvements » (Cerri & al., OSTST 2013)

OUT-OF-PLAN BEHAVIOUR (2) EMPIRICAL 1/REV ACCELERATION ANALYSIS

Ccnes

OUT-OF-PLAN BEHAVIOUR (3) NORMAL BIAIS

Estimation of bias

- Estimation of the bias that causes 2.10^{-9} m/s^2 acceleration Bias \cong amplitude/0.6 / omega² = $2.10^{-9}/0.6/10^{-6} = 3.2 \text{ mm}$
- Error due to SRP mismodelling can be up to 4 mm maximum : → observed bias comes from CoM mismodelling, not SRP mismodelling

• INTRODUCTION

- JASON 2 RESULTS
- SARAL ANALYSIS
 OUT-OF-PLANE BEHAVIOUR
 IN-PLANE BEHAVIOUR
- CONCLUSION

IN-PLANE BEHAVIOUR (1) THEORETICAL SHAPE OF ALONG-TRACK ACCELERATION

$\begin{array}{c} \text{IN-PLANE BEHAVIOUR} \quad \textbf{(2)} \\ \beta \text{- DEPENDANCY} \end{array}$

No systematic behaviour

 Different behaviour in winter and summer

Tcos:

 Should be small due to the symmetry of the satellite attitude

Tsin :

- β<75°: summer and winter curves don't superimpose
- β >75°: lack of data and dispersion

IN-PLANE BEHAVIOUR (3) INFLUENCE OF THE ATMOSPHERIC DRAG

- Similar signatures on drag values and empirical along-track amplitude
- Atmospheric drag may contribute to T empirical 1/rev acceleration
- Other effect? (attitude)

• INTRODUCTION

- JASON 2 RESULTS
- SARAL ANALYSIS
 OUT-OF-PLANE BEHAVIOUR
 IN-PLANE BEHAVIOUR
- CONCLUSION

Ccnes

CONCLUSION

JASON 1 and JASON 2

 \rightarrow See OSTST presentation on Wednesday, 12:00

SARAL CROSS-TRACK BEHAVIOUR

- Observed cross-track bias cannot come from SRP model
- Cross-track current SRP model OK

SARAL IN-PLANE BEHAVIOUR

- Summer and winter behaviour inconsistent
- Model ok during summer (precision 10-9)
- During winter : important discrepancies in acceleration for the same beta value (high dispersion) and only one set of data

The current SRP model is satisfactory for GDR products Possible improvement using more β cycles to mitigate drag effect

Thank you for your attention

Any questions?

Back-up slides

23 IDS Workshop, Constance, Germany, 2014.

28/10/2014

BACK UP SLIDES (1) COMPUTATION OF THE OPTICAL COEFFICIENTS

- Computation of the optical coefficients from the material property and the amount of each material on each side of Saral ^[2]
- New hypothesis : MLI doesn't absorb solar flux. All the incoming flux is reemitted in IR, (diffuse reemission)

smaller values of K_a

[2] « Saral characteristics for DORIS calibration plan and POD processing», Cerri & al

BACK UP SLIDES (2) RMS OF ORBIT DIFFERENCES

- RMS of orbit differences for the two sets of (K_s, K_d, K_a) parameters
- Very small in-plane orbit differences (absorbed by empiricla 1/rev acceleration)
- Normal bias (not absorbed by parameterization)

BACK UP SLIDES (3) 1/REV EMPIRICAL COEFFICIENTS

Tcos

 K_s, K_d and K_a have no influence on Tcos (because Tcos cannot be SRP)

Tsin

- Same values around β=90° (because for β=90°, there are no in-plane SRP accelerations, Tsin and Tcos are then only made of unmodelled forces)
- Tsin still not a function of β

BACK UP SLIDES (4) RESPONSE TO A PERTURBATION

Dynamic response to a periodic perturbation

- For frequencies close to the orbital period f_0 : radial error due to the perturbation is very small
- For frequencies far from the orbital period $(0,9f_0 \text{ and } 1,1f_0)$: radial error due to the perturbation is maximum
- SRP force spectrum : close to the orbital period.
- → That's why the orbit comparison of the two different models has very small RMS in radial and alongtrack directions.

BACK UP SLIDES (5) SENSITIVITY ANALYSIS, THERMO-OPTICAL COEFFICIENTS

- Different sets of (K_s, K_d, K_a) are considered
- Difference between GDRD coefficients and sets coefficients :

Set	ΔK_s	ΔK_d	ΔK_a
1	0.25	0.0	-0.5
2	0.0	0.0	0.0
3	-0.25	0.0	0.5

BACK UP SLIDES (6) ANALYSIS OF 1/REV EMPIRICAL ACCELERATION COEFFICIENTS

When β close to 90°

 Tsin and Tcos bias : jumps when β close to 90

Tcos

 can't come from nominal SRP : something else is absorbed

Tsin

not a function of β

BACK UP SLIDES (7) ESTIMATED ACCELERATION : DRAG, GDRD ORBITS

30 IDS Workshop, Constance, Germany, 2014.

BACK UP SLIDES (8) ESTIMATED ACCELERATION : SRP, GDRD ORBITS

31 IDS Workshop, Constance, Germany, 2014.

BACK UP SLIDES (10) ESTIMATED ACCELERATION HILL: DRAG, GDRD ORBITS

Coes

BACK UP SLIDES (11) EVOLUTION OF β

