Using DORIS for modeling the Vertical Total Electron Content of the Earth's Ionosphere

Denise Dettmering, Marco Limberger, and Michael Schmidt

Deutsches Geodätisches Forschungsinstitut (DGFI) Centre of Geodetic Earth System Research (CGE) München, Germany email: dettmering@dgfi.badw.de

Motivation

CGE

- DORIS data distribution
- □ Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types
- Conclusion and Outlook

- DORIS data distribution
- Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types
- Conclusion and Outlook

DORIS data distribution: missions

currently: 4 missions with DGXX receiver Jason-2 / Cryosat / HY-2A /Saral

DORIS data distribution: ground beacons

DORIS data distribution (24h)

sun-fixed reference system:

no uniform distribution due to sun-synchronous orbits of HY-2A and Saral

Data distribution is not sufficient to derive DORIS-only global ionosphere models for each day of the year !

- DORIS data distribution
- Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types
- Conclusion and Outlook

DORIS data prepocessing

- DORIS data distribution
- □ Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types
- Conclusion and Outlook

DORIS VTEC validation

DGFI

CGE

DORIS VTEC validation

ĊGE

from Dettmering et al, Journal of Geodesy, 2014

- DORIS data distribution
- □ Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types

Outlook

DGFI's global VTEC model approach

Differences to a given background model (e.g. IRI or IGS GIM) are modeled by a tensor product of one-dimensional B-spline functions.

$$\Delta \text{VTEC}(\phi, \lambda, t) = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} \sum_{k_3=0}^{K_3-1} d_{k_1,k_2,k_3} B_{k_1}^{J_{\phi}}(\phi) T_{k_2}^{J_{\lambda}}(\lambda) B_{k_3}^{J_t}(t)$$

Input:

VTEC from different observation techniques (e.g. GNSS, DORIS)

automatic weighting by means of variance component estimation

Output:

unknown series coefficients $d_{k1,k2,k3}$

(number depends on the B-spline levels J_{φ} , J_{λ} , and J_t and define the model resolution)

- DORIS data distribution
- □ Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types
- Conclusion and Outlook

Global VTEC models – combined solution

Background model: NIC09

Model result for 258/2013; snapshot at 8 UTC Input: GPS, radio occultations (RO), and DORIS (Jason-2, Cryosat, HY-2A, Saral)

Comparison with IGS GIM and radar altimetry (RA) from Jason-2

	mean σ _{VTEC}	RMS IGS GIM	RMS RA (J2)
GPS	9.2	5.8	6.28
GPS, RO	8.2	5.4	6.16
GPS, RO, DORIS	5.0	4.5	5.44
			[in TECU]

ĊGE

17

Global VTEC models – updated IGS GIMs

Background model: IGS GIM

 \Rightarrow better performance in areas without adequate input data distribution \Rightarrow only DORIS VTEC as input observations

Global VTEC models – updated IGS GIMs

 \Rightarrow Significant improvements for most of the days under investigation

 \Rightarrow Selected days with problems due to inadequate model resolution

 \Rightarrow DORIS model performance worse for last part of the time series (still under investigation)

- DORIS data distribution
- Pre-processing of DORIS data
- □ Validation of DORIS VTEC
- Global VTEC model approach
- □ Results: VTEC models based on different observation types
- Conclusion and Outlook

Conclusion

- ✓ DORIS VTEC observations show good consistency with external global models: 1-2 TECU RMS, depending on elevation cutoff and solar conditions
- ✓ Continuous computation of high-resolution DORISonly global VTEC models impossible due to orbit configuration of current DORIS missions
- ✓ DORIS VTEC values can be of high value for ionospheric modelling when combined with other space-geodetic input data (e.g. GNSS)
- ✓ Including DORIS into GNSS-derived VTEC models (IGS GIM) can improve the consistency with radar altimetry measurements by more than 10% for single days.

Outlook

- ? How will the utilization of an adapted model approach (i.e. local or regional) influence the model accuracy?
- ? Might DORIS measurements be used for operational correction of single-frequency altimeter systems?

? What can DORIS measurements contribute to 4-D ionosphere modelling?

Questions ?

Denise Dettmering, Marco Limberger, and Michael Schmidt

Deutsches Geodätisches Forschungsinstitut (DGFI) Centre of Geodetic Earth System Research (CGE) München, Germany email: dettmering@dgfi.badw.de

