

# Doris ground network performance and monitoring

```
C. Tourain (CNES),
C. Jayles (CNES),
G. Moreaux (CLS),
J. Saunier(IGN),
P. Yaya (CLS),
F. Didelot (CLS),
F. Boldo (IGN)
```

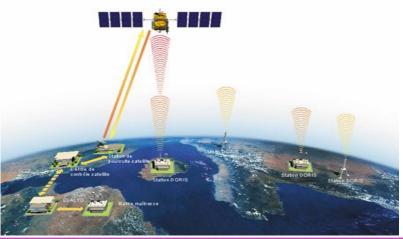
#### **OUTLINE**

- Reminder about DORIS system
- Quality parameters and usage
  - Orientation for interventions
  - Global quality monitoring
- Examples
- Installation requirements and compliance matrix

### Introduction / reminder

DORIS system is based on Doppler shift measurement of RF signals
 DORIS system, it is:

A ground network




Several on-board instruments



For one given DORIS mission

The network is as important as the instrument



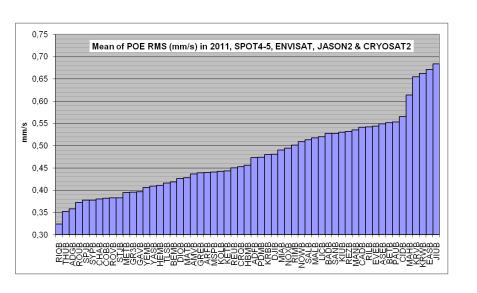
### SALP mission

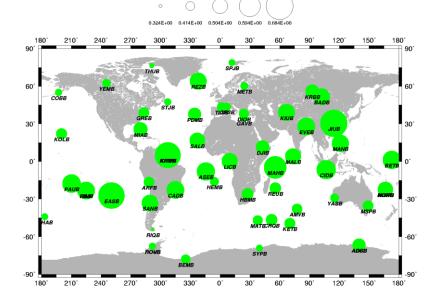
- One of the SALP project missions is to maintain the DORIS network
- This means:
  - Maintain a high level of availability
    - Monitor DORIS stations transmissions
    - Fix or replace material in case of failure
    - Prevent failure by identifying default and corrective actions.
    - Work preformed routinely (availability over 85% since 2006)
  - Guaranty and improve the network quality as much as possible
    - Define parameters relevant of station quality
    - Monitor those parameters,
    - · Define action plan to improve quality when possible.
    - Mid/long term work based on :

#### analysis of:

- RF signal transmission
- Ground treatment outputs

#### improvement of installation


- REX assimilation in specifications
- New specifications for new objectives


### Quality parameters and usage

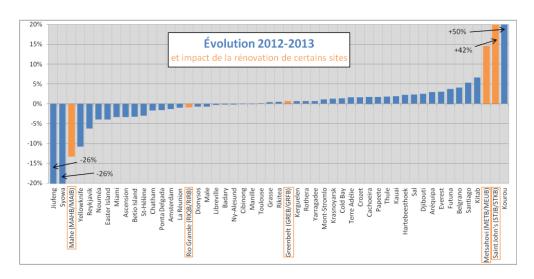
- Quality is checked at several levels
  - Observation on the signal received on board
    - Power level
  - Ground treatments outputs
    - · Residuals from precise orbit processing
    - Residuals from precise localization processing
- Those parameters can be used in different ways :
  - To establish a relative ranking of site quality
  - To observe the evolution :
    - of each site quality
    - of the global network quality
  - To characterize the quality of one site and determine possible improvements

### Network sites relative quality

- Every year an assessment is performed on POE residuals for all DORIS sites
  - The mean of POE residuals is determined for all stations over the full year,
  - It allows to distinguish sites where improvement can be made,
  - Two ways of looking at it :





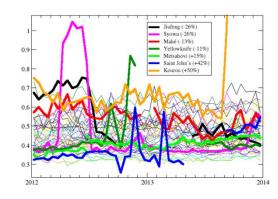

- There is a latitude effect that must be taken into account :
  - Sites at high latitudes have more measurements and consequently more weight in solutions
- The map helps to distinguish real problematic sites
  - The latitude effect is easily visible

### Sites quality evolution

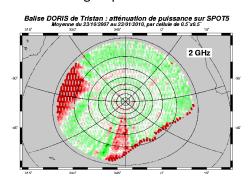
DORIS stations are not transmitting in a fixed environment

DORIS stations elements can present degradations that do not impact network availability but decrease stations performance (USO ageing...)

=> Every year a comparison of residuals with those of previous one is performed

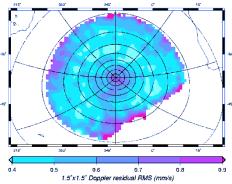



- This evolution (given in percentage) allows:
  - to identify sites with abnormal degradation
    - Investigation are meant to determine degradation origin
  - to measure the impact of station renovations


### Use of indicators

#### Those metrics are used to analyze sites needing improvement:

- Specific investigations:
  - Temporal analysis

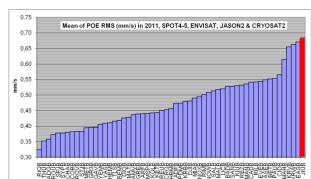


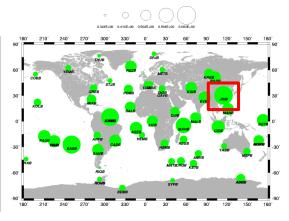

- Geometric analysis
  - · signal power level received



- Corrective actions
  - Material change
  - Environment modification
  - Antenna re-location

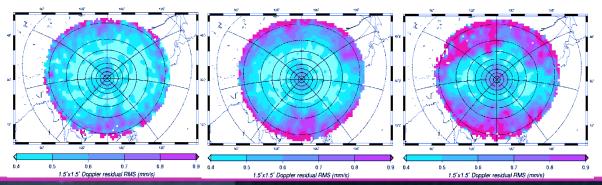
#### Residuals





### Examples: Jiufeng (1/2)

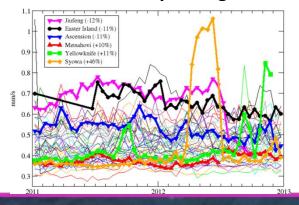
#### Progressive increase or RMS

Jiufeng station strongly degraded performance

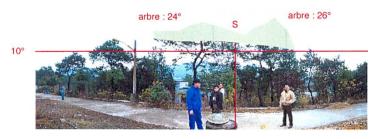


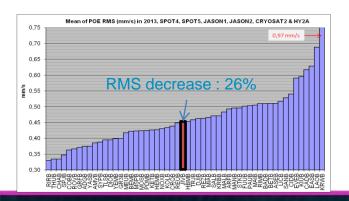






#### Investigation

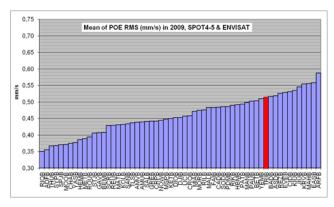
- The evolution of RMS is progressive and constant
- Localized on North and South of the visibility circle

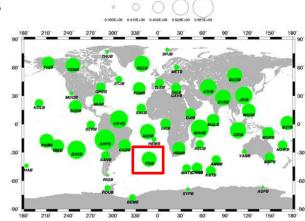




# Examples: Jiufeng (2/2)

- Site observation :
  - Vegetation height strongly increased
    - Match with quality degradations observed.
- Several options considered :
  - Antenna raising
  - Station re-location
  - Cutting back Vegetation
- simplest : vegetation pruning=>request to the host agency => OK
- Results after the pruning of trees:

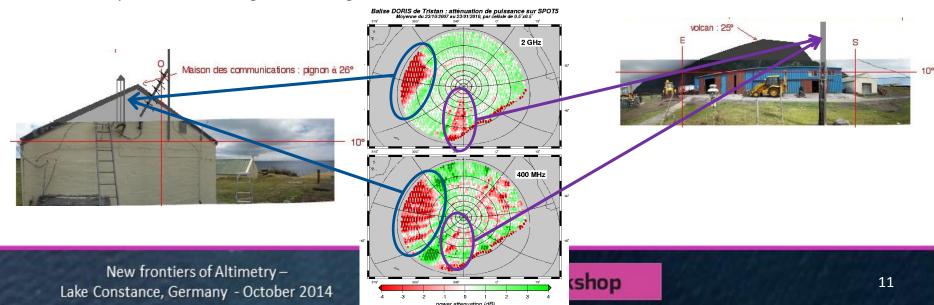






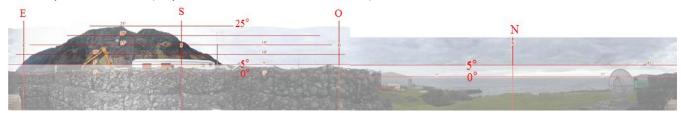

### Examples: Tristan Da Cunha (1/2)


Tristan Da Cunha station among the lowest performers



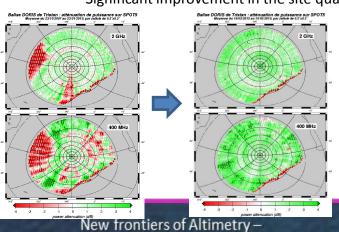


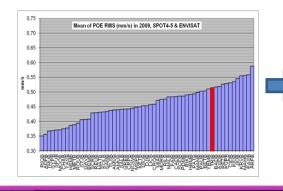
#### Investigation

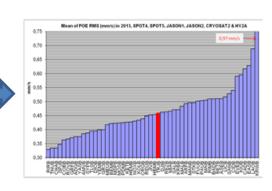

=> important masks degrades the signal



### Examples: Tristan Da Cunha (2/2)

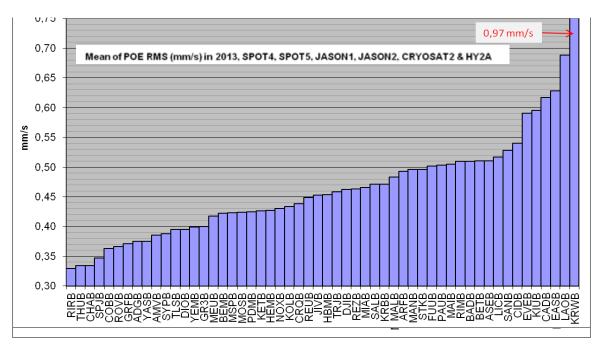

#### Options possible:


- Antenna raising => not possible, would need to raise too high
- Pylon and building removal => impossible, used by host agency
- Station displacement => OK
- New station location on the same Island found by IGN
- Station re-located and installed by IGN
  - Except the volcano (impossible to avoid on the island), no mask above 5° elevation.




#### Results after re-location:

Significant improvement in the site quality








### Global network quality evolution (1/2)

- To get an idea of the evolution of the global network quality
- Inter annual POE RMS evolution observation



- Analysis results to be taken with care
  - Would be relevant with a consistent constellation over time
  - The constellation change over time (instruments loss, new generation instruments...)
  - => this gives an indication, not an absolute metric

### Global network quality evolution (2/2)

- POE RMS is relevant of :
  - DORIS system noise : estimated at a level of 0,3mm/s
    - Instrumental modeling accuracy
    - Dynamic models accuracy
  - All disturbances that can be encountered on site:
    - RF environment
      - masks,
      - reflecting surfaces
      - Other RF systems
    - Ionosphere disturbances (scintillations)
    - ...
- The permanent DORIS network is composed of 56 sites
  - This means 56 different environments with specific characteristics
  - RF environment and impact on DORIS signal is a wide subject
  - We can not treat and characterize all DORIS sites
- However
  - Degraded sites are analyzed and treated when possible
  - In order to prevent, as far as possible, form disturbances
    - Installation requirements have been improved
    - IGN contributes to the installation requirements evolution and works on site to:
      - select the best suitable site and location compliant with the installation requirement
      - Collect site specificities and examine the compliance with those requirements

# Installations requirements (1/2)

#### Installation requirements were written in 2007 by CNES and IGN

- To specify selection criteria for new DORIS sites
- To define standards for DORIS stations installations
- Available on IDS web site :
  - ftp://ftp.ids-doris.org/pub/ids/stations/System\_Requirements\_For\_Management\_Of\_The\_DORIS\_Station\_Network.pdf

#### 2 main levels of requirements:

- Operational requirements
  - Guaranty the stations availability
    - Power, beacon hosting building, accessibility...
- Performance oriented requirements
  - RF environment : visibility cone, envelope volume
  - Geodetic requirement : short/mid/long term stability

# Installations requirements (2/2)

#### To keep information about compliance to requirements,

- A compliance matrix is filled in for each new site
  - It indicates for each requirement if the site is compliant or if a derogation is allowed
  - Main site specificities are given
- This matrix is also filled in for old sites during a visit,
- It allows:
  - To choose the best location on a site when several options are possible, based on objective criteria
  - To eliminate, as far as possible, disturbances by respecting the most requirements for new sites
  - to identify more easily degradation sources on old sites
  - to assess the network quality

# THANK YOU