

INSTITUT NATIONAL DE LINFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Ground Antenna Position Initiating an Error Budget

A. Auriol (CNES), J. Saunier (IGN), C. Tourain (CNES)

INTRODUCTION

OBJECTIVE

The DORIS system measures distances between phase centers of onboard and ground antennas to determine the satellite position on its orbit

REQUIREMENT

- The ground antenna phase center position must be known in a terrestrial reference frame
- This position is linked and defined with respect to the Antenna Reference Point (ARP), a conventional physical point of the antenna body

THE GROUND ANTENNA

Measurement Point

Reference Point

- STAREC MODEL: HELICAL ANTENNA TYPE
- THE ENTIRE NETWORK USES THIS ANTENNA
- ANTENNA <u>REFERENCE POINT</u> (ARP):
 - Intersection of the antenna axis and the red ring
- ACTUAL <u>MEASUREMENT POINT</u> (AMP):
 - 2GHz phase center: located on the antenna axis, 877 mm from the antenna base

THE AMP POSITION IS DEFINED W.R.T. ARP POSITION

- Up Eccentricity of 487 mm between ARP and AMP
- Possible manufacturing defect: misalignment, imperfection...
- Possible installing defect: verticality

877 mm

IGN RESPONSIBILITIES

PLACE UP RIGHT THE ANTENNA: VERTICALITY ADJUSTMENT

Meet the installation specifications to secure the link between ARP and AMP

ASSIGN COORDINATES TO THE ANTENNA REFERENCE POINT

- Combining terrestrial measurements of angles, distances and height differences
- Computing differential coordinates expressed in a topometric frame
- Referencing into a global frame (ITRF)

MANUFACTURING

- 1. Variability of the 2GHz phase center position w.r.t. antenna flange => vertical error
- 2. Centering of the 2GHz phase center w.r.t. radome => horizontal error
- 3. Alignment ARP/AMP w.r.t. antenna axis => horizontal error
- 4. Perpendicularity of the antenna flange w.r.t. antenna axis => cured by installation

SURVEY

- 1. Antenna verticality adjustment => horizontal error
- 2. Local tie survey (ARP positioning) => horizontal and vertical error

WORKING GROUP CNES/IGN

NEW ANTENNA DEVELOPMENT: NOT THE OPTION RETAINED

MAKING IMPROVEMENTS TO THE CURRENT ANTENNA

- Antenna characterization undertaken by CNES
- Better control of the reproducibility of the antennas manufacturing
- Thinking on devices facilitating the survey
- Defining the characteristic points of the antenna

STAREC B TYPE => STAREC C TYPE

- From serial number SN 172
- Consolidated specifications :
 - Position of the 2GHz phase center w.r.t. antenna body
 - Perpendicularity antenna base/antenna axis
 - Alignment of the connector on the antenna axis
- Allows new method of ARP position determination

ANTENNA POINTS DEFINITIONS* AMP: ACTUAL MEASUREMENT POINT 2 GHz phase center ARP: ANTENNA REFERENCE POINT Intersection of the antenna axis and the red ring IOAP: INSTRUMENT OPTICAL ACCESS POINT Intersection of the antenna axis and the flange Can be surveyed directly (optically) IMP: INSTRUMENT MONUMENT POINT Witness mark under the antenna = geodetic print of DORIS Essential to measure successive antenna positions

Measured using surveying techniques

Inspired by the Space Geodetic Project (NASA) nomenclature

AMP

ARP

IOAP

7/9

VECTORS

- IF THE ANTENNA REQUIREMENTS ARE MET (MANUFACTURING + INSTALLING):
- WE CAN DETERMINE THE ARP POSITION USING THESE VECTORS:

IMP > IOAP

Determined by optical surveys

IOAP > AMP

Up Eccentricity of 877mm

AMP > ARP

Up Eccentricity of -487mm

IMP > ARP = IMP > IOAP + IOAP > AMP + AMP > ARP

ERROR BUDGET

- The work with the manufacturer helped to consolidate the antenna specifications and draw up an error budget
- The topometric measurement uncertainties remain unchanged but the surveying operations are facilitated

Error Type	Error Source	Direction	Error Value	
Manufacturing	2GHz PC centering / radome	Horizontal	±1mm	± 2 mm
Manufacturing	Alignment ARP/AMP / axis	Horizontal	±1mm	
Manufacturing	2GHz PC position / flange	Vertical	±1mm	± 3 mm
Characterization	2GHz PC position and associated phase law	Vertical	± 2 mm	
Survey	Verticality adjustment	Horizontal	±1mm	± 2 mm
Survey	Local tie survey	Horizontal	±1mm	
Survey	Local tie survey	Vertical	±1mm	±1mm

<u>NB</u>: this error budget is relating to future installations (C type antenna)