Current Research Acitvities at GOP DORIS analysis center

Petr Štěpánek (1), Carlos Rodriguez-Solano(2), Urs Hugentobler(2), Vratislav Filler (1)

(1) Geodetic Observatory Pecný, Research institute of Geodesy, Topography and Cartography, Ondrejov, Czech republic (petr.stepanek@pecny.cz)
(2) Institut für Astronomische und Physikalische Geodäsie, Technische Universität München

Current Research activities at GOP

□ Routine data processing (Free network solutions)

- Weekly solutions delivered in SINEX format
- Analyses of the time-series in Moreaux et al. : Research activities at the IDS Combination

Center

Evolution of LEO dynamical orbital modeling (together with TUM Munich)

- Implementation into Bernese GPS Software
- See also Rodriguez-Solano et al.: Comparison of Earth radiation pressure models for DORIS satellites

South Atlantic Anomaly (SAA) effect on the SPOT-5 DORIS observations

See also Capdeville et al.: Update of the SAA corrective model for Jason-1 DORIS data and discussion about a SAA corrective model for Spot5

SPOT-5 and South Atlantic Anomaly –what is known

- □ SPOT-5 oscillator is affected by SAA, confirmed by many tests
- □ Size of the effect is lower than for Jason-1 (about one order of magnitude?)
- □ Effect is far from being negligible
- □ Strongly affected observations of stations in Brazil (CADB),Peru (ARFB) and Chile (SANB)
- □ In extreme case (CADB) decimeter offset of station height for single satellite solution
- □ How to deal with this problem: station selection or data corrective model

Empirical data corrective model

- □ To be considered as first approach to confirm the possibility to process the corrected data
- □ We need to model an onboard frequency behavior during the satellite pass
- □ Frequency offset is not a problem (estimated per pass)
- □ Jason-1 data corrective model developed by Lemoine and Capdeville (2006) –starting point
- □ Motivation: effect is much smaller for SPOT-5, even a simple model could work well
- □ Model then simplified for SPOT-5(no memory and recovery effects)
- □ At current step, model developed for 1 year (2011) SAA effect considered constant
- □ Corrections applied only for stations from SAA region

2X2 deg. grid map of the onboard frequency time derivative – see Capdeville et al. presentation

Average frequency time derivative calculated for each station and 2X2 deg. Grid map for the SAA stations, 2011.0 – 2012.0

Residuals reduction applying the frequency time derivative from the grid map

(March-April 2011)
 Grid map from data 2011.0-2012.0

Station coordinates

□ Differences between SPOT-5 solution and multi-satellite solution

(excluding SPOT-5)

March-April 2011

□ Differences strongly decreased applying SAA corrections

The time derivative frequency offset estimated per station 2008-2011

Monthly average time derivative for each station (Hz/Day)
 Possible drift and seasonal variations

The time derivative frequency offset estimated per station 2008-2011

Average from the CADB, SANB, ARFB frequency time derivative expressed in relative unit (1=average for whole 4 years period

- □ Monthly average time derivative –LEFT plot
- □ Annual average time derivative for each station –RIGHT plot
- □ Drift more significant than from single station plots
- □ Significant Seasonal variations stronger for last two years 2010-2011
- Drift corresponds to previous study of station height time series 2003- 2009, where hight

differences for CADB, SANB, ARFB are rising after 2007.0

Comparison of the Reduced-Dynamical and Dynamical orbit model

-Classical Bernese orbit modeling is based on pseudo-stochastic and empirical models -Dynamical model developed in cooperation of GOP and TUM

Modeling	Empirical-Stochastic (reduced-dynamical)	Dynamical
Satellite attitude and geometry	Not considered	Nominal Box-Wing model
Atmosphere density model	Not applied	MSIS-86
Atmosphere drag	Absorbed by along track stochastic parameters and Y-constant empirical parameter	Scaling coefficient estimated
Solar radiation Pressure	Absorbed by empirical constant parameter in sun-satellite direction	Scaling coefficient estimated or fixed value closed to "1".
Earth radiation	Not applied	A priori model, reflexivity and emissivity
1-per revolution empirical modeling	Sun-Satellite and Y- direction	Along and cross track (optional)

Comparison of the Reduced-Dynamical and Dynamical orbits

Compared daily Arcs 1st of February -3rd of March 2011

External Orbit comparison

- Compared with SSALTO multi-technique orbit
- Comparison on daily bases Mean (Average), Std. Dev. of the Mean (Mean variations from day to day)
- RMS (daily Mean removed)

Internal Orbit comparison

Midnight orbit overlaps

Results

- Per satellite in following slides
- Dynamical orbits better in the most of the observed indicators
- Radial and Tangential RMS lower for Dynamical orbits all the satellites
- Radial and Tangential Overlaps lower for Dynamical orbits all the satellites
- Normal Std. Dev. Of the Mean much lower for Dynamical orbits

Cryosat -RMS (cm)

Cryosat - STD dev Mean(cm)

Orbit overlaps(cm)

SPOT-5 - STD dev Mean(cm)

ENVISAT RMS (cm)

1,5 1 0,5 0 Rad Alo Out -0,5 -1

ENVISAT Mean(cm)

ENVISAT STD dev Mean(cm)

SPOT-4 - STD dev Mean(cm)

Jason-2 RMS (cm)

Jason-2 Mean(cm)

Jason-2 STD dev Mean(cm)

Jason-2 Orbit overlaps(cm) Reduced D. Dynamical

Out

Alo

Dynamical

Štěpánek et al.: Current Research Actitvities at GOP DORIS analysis center, IDS workshop, Venice, September 25-26,2012

25 20

15

10

5

0

Rad

Free network weekly solutions

□ 1 year of data (2011)

Comparison of the estimated network and pole using reduced-dynamical and Dynamical orbit

Transformation parameters vs. ITRF2008

	Tx(mm) Aver.	Tx(mm) Std.d.	Ty(mm) Aver.	Ty(mm) Std.d.	Tz(mm) Aver.	Tz(mm) Std.d.	Sc (ppb) Aver.	Sc(ppb) Std.d.	
Red.d.	0.4	5.3	-5.1	7.0	7.2	10.7	0.5	0.3	
Dyn.	-0.2	5.5	-7.6	4.0	-0.4	12.3	0.1	0.3	

TX seasonal variations more significant for Dynamical, TY more significant for Reduced dynamical

Free network weekly solutions (2)

STATION RMS vs. DPOD2008

	North (mm)	East (mm)	Up (mm)
Reduced-d.	16.1	19.8	19.5
Dynamical	14.5	17.1	19.0

WRMS

	North (mm)	East (mm)	Up (mm)
Reduced-d.	9.1	11.8	10.0
Dynamical	9.5	11.4	9.4

Estimated Polar coordinates Xp,Yp vs. IERS C04 (solution with fixed rotations vs. ITRF2008)

	Xp Mean (mas)	Xp RMS (mas)	Yp Mean (mas)	Yp RMS (mas)
Reduced-d.	-0.40	-0.20	0.689	0.657
Dynamical	0.27	0.27	0.785	0.657

Thanks for the attention