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Observatoire Midi-Pyrénées (CNRS/CNES/GS), 14 avenue Edouard Belin, 31400 Toulouse, France

Abstract

WITH the aim to detect millimetric horizontal and ver-
tical site displacements of geophysical origin, we in-

vestigate the problem of the propagation of electromagnetic
GNSS signals through the troposphere. Our approach is to
ray-trace the propagation, integrating the eikonal differen-
tial system through the atmospheric refractivity structures
provided by the ECMWF model levels at all elevations and
azimuths, and to characterize the delays by several map-
ping functions relative to each kind of physical processes
perturbing the propagation. We especially focus on the lat-
eral azimuthal variability of the propagation, and map the
various processes describing the delays and ray bending
by adapting suitable mapping functions at each time step.
The Azimuthal Anisotropy Adaptive Mapping Functions, de-
velopped at GRGS Toulouse, summarize hundred thou-
sands of rays in a few tens of coefficients at a few millime-
ters accuracy whatever the azimuth and for a five degrees
elevation cutoff, and are suitable to correct GNSS signals
at the measurement level.

1. Refractivity

THE refractivity of the moist air is the key parameter
which drive the propagation of GNSS signals through

the troposphere. The total refractivity of moist air may be
expressed in terms of the (total moist air) pressure and the
wet (water vapor) partial pressure.

Nk = k1
pk
Tvk

+

(
k′2
pvapk
Tk

+ k3
pvapk
T 2
k

)
(1)

This decomposition is preferred because its first term stricly
follows the hydrostatic equilibrium of the model and the to-
tal refractivity does not depart two much from an hydrostatic
equilibrium. The refractivity coefficients are empirically de-
termined coefficients which depend on the frequency of the
electromagnetic signals. The empirical refractivity coeffi-
cients are k1 = 77.6 10−2K.Pa−1, k2 = 70.4 10−2K.Pa−1

and the coefficient k′2 = 22.1 10−2K.Pa−1 is a combination
of k1 and k2, k3 = 3.739 103K2.Pa−1 (Bevis et al. 1994).
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Figure 1: Surface refractivity N91 and Latitudinal vertical
refractivity profile computed every 125m using the vertical
refractivity functionals for the GPS tracking station located

in Toulouse (08/10/2008, 16Z). The Latitude of the
Toulouse site is φ = 43.36o and the Longitude is λ = 1.48o

Vertical refractivity functionals are introduced in order to
properly represent the refractivity between the model levels
along the normal to the ellipsoid which points to the zenith
of the local horizon. Since the hydrostatic term strictly fol-
lows the hydrostatic equilibrium and since the vertical (total)
refractivity profile is close to an hydrostatic profile, exponen-
tial functionals are chosen.

N(φi, λj, z) = exp(Nc
k + Nz

kz) ∀z ∈ [zk, zk−1] (2)

Nc
k(φi, λj) = (zk−1 lnNk − zk lnNk−1)/(zk−1 − zk) (3)

Nz
k (φi, λj) = (lnNk−1 − lnNk)/(zk−1 − zk) (4)

Horizontal interpolations to the propagation path are re-
quired. For a point P (φ, λ, z) along the propagation path,
the coefficients Nc

k(φi, λj) and Nz
k (φi, λj) of the four neigh-

bouring refractivity profiles are interpolated by a bilinear
interpolation to define the vertical refractivity profile by
Nc
p(φ, λ) and Nz

p (φ, λ) at point P.

N(φ, λ, z) = exp(Nc
p(φ, λ) + Nz

p (φ, λ)z) (5)

The refractive index n(z) along the propagation path is

n(φ, λ, z) = 10−6N(φ, λ, z) + 1 (6)

The refractivity functional N(φ, λ, z) provide a continuous
formulation of the vertical gradient of the refractive index.

dn

dz
= (n− 1)Nz

p with z ∈ [zk, zk−1] (7)

2. Propagation: The eikonal equation

DURING its propagatation through the refractive atmo-
sphere, GNSS electromagnetic waves are slowed

down and their direction of propagation change depending
on their own frequencies and the medium they propagate
through. The physical propagation property is given by the
empirical refractive index n which vary temporally and spa-
tially with changing atmospheric conditions.
- The physical law governing the propagation is the eikonal
equation. Paths followed by GNSS waves are geometrical
rays which are perpendicular to the wavefronts. The eikonal
equation lead to a set of non-linear partial differential equa-
tions, the characteristic equations, and is solved for the ra-
dio path length by the so-called method of characteristics.
The characteristics are the geometrical rays.
- The arclength s and the travel time T are dependent vari-
ables which adjust so that the travel time along the geomet-
rical ray is stationary accordingly to Fermat’s principle.
The spherical coordinates, the radial distance r, the geo-
centric colatitude θ and the longitude λ are relative to the
frame linked to the Earth’s center of mass.
The eikonal equation simply is H(r, θ, λ, pr, pθ, pλ) = 0.

H =
1

2

(
p2
r +

p2
θ

r2
+

p2
λ

r2 sin2 θ
− n2(r, θ, λ)

)
= 0 (8)

The six first-order eikonal differential equations are de-
duced, by taking the longitude λ as the independent vari-
able, to a set of five first-order eikonal differential equations
describing the partials of the position of the current point
P (r, θ, λ) along the ray path

dr

dλ
=
r sin θ tan ε

sinα

dθ

dλ
= sin θ cotα

dλ

dλ
= 1 (9)

The partial derivatives of the elevation ε and the azimuth α:

dε

dλ
=

sin θ

sinα

(
1

n

dn

dr
+ 1

)
+

sin θ tan ε

tanα

1

n

dn

dθ
+ tan ε

1

n

dn

dλ
(10)

dα

dλ
= − cos θ +

sin θ

cos2 ε

1

n

dn

dθ
− cotα

cos2 ε

1

n

dn

dλ
(11)

Partial derivatives of the arclength of the ray s and the op-
tical path length L of the wave through the dense atmo-
sphere are added to the eikonal differential system to pro-
vide the required solution.

ds

dλ
=

r sin θ

cos ε sinα

dL

dλ
= n

r sin θ

cos ε sinα
(12)

An additional partial derivative relative to the hydrostatic de-
layDh is required to estimate separately the hydrostatic and
the non-hydrostatic terms.

dDh
dλ

= n̄
r sin θ

cos ε sinα
(13)

3. Delays

THE arclength LS is simply the geometrical length of the
ray. The radio path length L account for an increase of

length due to the wave propagating at a speed v = c/n, in
the medium of refractive index n > 1, slower than the speed
of light c it would have in vacuum, and for an increase of
the arclength LS of the ray path S, relative to the bending
of the ray path due to the gradients of the refractive index,
in comparison to the straigth line path SL it would follow in
vacuum. The radio path length is the solution of the propa-
gation problem but is developped in terms of the hydrostatic
and non-hydrostatic terms. The sum of this two terms is the
total delay.

L =

∫
S
ds +

∫
S

(nh − 1) ds +

∫
S

(nnh − 1) ds (14)

The geometric delay DG is defined as the difference in
length of the paths S and SL, the arclength LS minus the
geometric distance of the straight line LG.

DG = LS − LG =

∫
S
ds−

∫
SL

ds (15)

The radio delay D is defined as the increase of length of
the optical length L compared to the straight line distance
or geometric distance LG between the starting and ending
points of the ray path.

D = L− LG =

∫
S
n ds−

∫
SL

ds (16)

4. Anisotropy Adaptive Mapping Functions

ADAPTIVE Mapping Functions are now defined. The
basic underlying idea is to insert a dependency to

the azimuth α inside each fraction coefficient aif that is
introducing a Fourier serie in α:

aif = aif ,0 +

iα=nα∑
iα=1

acif ,iα cos iαα + asif ,iα sin iαα (17)

The numerator and denominator at fraction truncation are

Nnf = 1 + anf Dnf = sin ε + anf (18)

The numerator and denominator at each level index if are

Nif = 1 + aif/Nif+1 Dif = sin ε + aif/Dif+1 (19)

These recursive definitions lead to the numerator Nf and
denominator Df of the mapping function f .

Nf = 1 +
a1

1 + a2
1+...

Df = sin ε +
a1

sin ε + a2
sin ε+...

(20)

And the mapping function f is scaled by a scaling factor Sf .
The elevation mapping function fε is a specific case.

f = Sf
Nf
Df

fε = f cos ε (21)

As the usual mapping function f3,0(ε) truncated at the third
fraction nf = 3 does not depend on α (nα = 0),

f = Sf

1 + a1

1+
a2

1+a3

sin ε + a1

sin ε+
a2

sin ε+a3

(22)

the adaptive mapping function f3,1(ε, α) truncated at the
third fraction nf = 3 with α-series truncated at the first term
nα = 1 is

Nf3,1
= 1 +

a1,0 + ac1,1 cosα + as1,1 sinα

1 +
a2,0+ac2,1 cosα+as2,1 sinα

1+a3,0+ac3,1 cosα+as3,1 sinα

(23)

Df3,1
= sin ε +

a1,0 + ac1,1 cosα + as1,1 sinα

sin ε +
a2,0+ac2,1 cosα+as2,1 sinα

sin ε+a3,0+ac3,1 cosα+as3,1 sinα

(24)

Gradients are introduced in two alternative forms: a formu-
lation where the gradient is embedded in the fraction form
by addition of four terms in the fraction coefficient a1 or the
classical formulation.

a
g
1 = a1 + (Ecc cosα + Esc sinα) cos ε (25)

+ (Ect cosα + Est sinα) tan ε (26)

or f = Sf
Nf
Df

(1 + (Dc cosα + Ds sinα) cot ε) (27)

5. Classical Mapping Functions

CLASSICAL mapping functions F3A0C5G2 are defined
without dependency in azimuth except for the classical

gradient. Even with a modified scale of the residuals graph
which is 2 cm instead of 2 mm, residuals below ten degrees
residuals are greater. The same conclusion is reached if the
fraction contains 5 terms (F5A0C5G2). The classical gra-
dient is not able to capture the azimuthal anisotropy.

0˚

30˚

6
0
˚

9
0
˚

1
2
0
˚

150˚

180˚

210˚

2
4
0
˚

2
7
0
˚

3
0
0
˚

330˚

−0.2 −0.1 0.0 0.1 0.2

m

5 10 20 60

0˚

30˚

6
0
˚

9
0
˚

1
2
0
˚

150˚

180˚

210˚

2
4
0
˚

2
7
0
˚

3
0
0
˚

330˚

−0.02 −0.01 0.00 0.01 0.02

m

5 10 20 60

0˚

30˚

6
0
˚

9
0
˚

1
2
0
˚

150˚

180˚

210˚

2
4
0
˚

2
7
0
˚

3
0
0
˚

330˚

−0.2 −0.1 0.0 0.1 0.2

m

5 10 20 60

0˚

30˚

6
0
˚

9
0
˚

1
2
0
˚

150˚

180˚

210˚

2
4
0
˚

2
7
0
˚

3
0
0
˚

330˚

−0.02 −0.01 0.00 0.01 0.02

m

5 10 20 60

Figure 2: Anisotropy (left) and residuals (right) of the delay
mapped by the Classical Mapping Function F3A0C5G2

nf = 3 (up) or F5A0C5G2 nf = 5 (down) without azimuthal
terms nα = 0 and with the classical gradient formulation.
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6. Performance of Adaptive Mapping Functions

HOW do specific adaptive mapping functions perform to
fit rays to mapping functions with a suitable accuracy ?

Several fraction truncations and α-series truncations are
now tested.
A convention is useful to name specific mapping functions:
- F3 is the fraction truncation number nf = 3,
- A4 is the truncation of the serie at nα = 4,
- C5 is the elevation cutoff at 5 degrees,
- G2 is the two terms classical gradient and
- G4 is the embedded gradient formulation.
Introducing the first two terms of the Fourier serie nα = 2
F3A2C5G2 (Figure 3), residuals drop below the millimeter
level above 10o, but below, some regions exhibit residuals
above 5 mm. Although the truncation to nf = 5 slightly im-
prove the fit, large residuals are present (F5A2C5G2).
Introducing a higher fraction truncation allow the elevation
profile of the functional to have more inflexion points and to
be bended with different slopes especially at low elevation
where the fourth and fifth fractions are significant.
The following graph shows that order of truncation
higher than 2 of the Fourier serie in α are required.
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Figure 3: Anisotropy (left) and residuals (right) of the
tropospheric delay mapped by the Adaptive Mapping
Function F3A2C5G2 nf = 3 (up) or F5A2C5G2 nf = 5

(down) with the α-serie truncated at nα = 2 and with the
classical gradient formulation.

The α-serie truncated at order nα = 4 now contains 8 az-
imuthal terms per fraction. The AMF-F3A4C5G2 contains
27 coefficients, 2 terms for the gradient and 1 for the scale
factor (Figure 4). The scale factor is close to the zenith de-
lay but may differ in some special cases (not shown) if the
minimum of the delays is not at the zenith.
When the α-series are truncated at order 4, Residuals
are now less than two millimeters for F3A4C5G2 and
less than one millimeter for F5A4C5G2.
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Figure 4: Anisotropy (left) and residuals (right) of the
tropospheric delay mapped by the Adaptive Mapping
Function F3A4C5G2 nf = 3 (up) or F5A4C5G2 nf = 5

(down) with the α-serie truncated at nα = 4 and with the
classical gradient formulation.

The embedded gradient slightly improve the fit but not sig-
nificanlty enough (Figure 5). We conclude that the use of
the adaptive mapping function containing 3 fractions and a
fourier serie in α truncated at nα = 4 allow to fit 32,400 rays
above an elevation cutoff of 5o using 30 coefficients with an
acceptable accuracy.
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Figure 5: Anisotropy (left) and residuals (right) of the
tropospheric delay mapped by F3A4C5G4 nf = 3 (up) or
F5A4C5G4 nf = 5 (down) with the α-serie truncated at

nα = 4 and the embedded gradient formulation.

7. Mapping Elevations and Delays

THE following figures provide mapping examples of the
components of the tropospheric delay and the elevation

function using the AMF-F3A4C5G2. The elevation bend-
ing variability represented on Figure 6 has an amplitude of
0.004 degree which seems small compared to a bending of
0.2 degree at a 5o elevation. But an error on the elevation
angle of 0.004 degree which is the main parameter of the
delay mapping function would lead to an error of 16 mm!
It is therefore crucial to account for the azimuthal variabil-
ity by introducing an elevation bending mapping function to
accurately estimate the incident elevation angle at the site.
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Figure 6: Fit of the anisotropy (left) and residuals (right) of
the elevation bending ∆ε by a F3A4C5G2 Adaptive

Mapping Function at Toulouse in August 10, 2008, 16Z

The AMF-R-F3A4C5G2 and AMF-T-F3A4C5G2 fit respec-
tively the tropospheric radio delay and the total delay (non-
hydrostatic + hydrostatic delays) (see Figure 7). The dif-
ference between these two delays is the geometric delay
which is here calculated at the top of atmosphere but has
to be computed in fine at the satellite position using the so-
lution to the parallax problem. The geometric delay is ten
times smaller than the total delay. Small differences can be
seen at azimuths 60o or 150o at 6o elevation.
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Figure 7: Fitted azimuthal variability (left) and residuals
(right) of the radio delay AMF-R-F3A4C5G2 (up) and the

total delay AMF-T-F3A4C5G2 (down) by a F3A4C5G2
adaptive mapping function at Toulouse in 08/10, 16Z

The AMF-N-F3A4C5G2 fit the non-hydrostatic delay (Fig.
8). Localized residuals does not exceed 2 mm. The AMF-H-
F3A4C5G2 fit the hydrostatic delay with a similar accuracy.
The azimuthal anisotropy of the non-hydrostatic term is the
main contributor to the total azimuthal anistropy. For this
case study, the azimuthal anisotropy pattern is explained by
the dry air over Spain at azimuth 330o from the Toulouse site
when at the same time air containing more moisture can be
observe over France (Figure 1) in the opposite direction.
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Figure 8: Fitted azimuthal variability (left) and residuals
(right) of the non-hydrostatic AMF-N-F3A4C5G2 (up) and
hydrostatic AMF-H-F3A4C5G2 (down) delays calculated

for the Toulouse GPS station, August 10, 2008, 16Z

In the perpendicular direction (60o), a symmetric distribution
of moist air over the Atlantic ocean and the Mediterranean
Sea does not generate (a dissymetry) a large gradient (this
is not the case 4 hours later, Figure 9).

8. Time discretisation

Several interpolation scheme may be investigated but the
key point is the time variability of delays itself. Similarly to
what is observed in the time-variable gravity field modeling,
the propagation patterns are mainly driven by the solar radi-
ation patterns (thermal tides) and to a smaller extent by the
regional (600 km around the site) meteorological systems.
Figure 9 present the time variability of the anistropic part of
the tropospheric delay using an hourly dataset. The hourly
samples of this day show smooth variations in anisotropy
except between 9Z+5 and 9Z+7 where the patterns are
completely inverted in two hours. A 6-hourly sampling is
done by looking only at the first column of the skyplots. It
would lead to a misrepresentation (usual aliasing) of semi-
diurnal processes! A 3-hourly sampling seems better but
would lead to a bad representation of what is happening be-
tween 09Z+03 and 09Z+09! These figures reveal the use-
fullness of increasing the time discretisation of meteo-
rological processes for space geodetic applications.
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Figure 9: Fitted azimuthal anisotropy of the tropospheric
radio delay in Toulouse for 24 hourly steps begining at

09Z, August 10, 2008.

Pratical investigations of a large number of situations and
sites are required to provide a realistic accuracy of the es-
timated delays depending on interpolation and sampling.
Time discretization of the delays relies on the meteorologi-
cal archives but it remains a major issue for the modeling of
tropospheric delays from numerical weather models.

9. Conclusions

SINCE the tropospheric delays are very sensitive to el-
evation, especially at low elevation, we underline that

the parallax problem has to be properly solved (not shown).
At 5o elevation, an inappropriate deviation of 0.25o would
lead to a metric error! Determining the proper ray eleva-
tion at the site is as critical as properly fitting the azimuthal
anisotropy because all corrections depend on this angle.
This study provide a detailed discussion of some phys-
ical and mathematical formulations needed to maintain
as far as possible a millimetric accuracy in handling
the atmospheric model, tracing rays, fitting mapping
functions and solving the parallax problem. Although
the millimetric accuracy is a concern which motivates the
introduction of some formulations, the time discretization
may not guarantee such precision and further invertigations
are required. Undergoing statistical investigation of a large
number of meteorological situations depending on the site
and practical orbitographic studies should provide realistic
estimates of the performance of the presented method.
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