

# DORIS signal integrity monitoring and control



# DORIS signal integrity monitoring What is it ? (1)

- Reminder : DORIS system is based on accurate measurements of the Doppler shifts on a radiofrequency signal
- The signal :
  - Dual frequency : 401.25MHz; 2.03625GHz
  - Transmitted by DORIS ground stations
  - Received on-board satellites by DORIS instruments
- Besides the signal
  - Beacons transmit system data
  - Especially master beacons (broadcast upload)



# ⇒ Without a consistent ground beacon network the DORIS system cannot reach its full performance



## DORIS signal integrity monitoring What is it ? (2)

- To ensure the capability of the Doris system to carry out its mission, we have to monitor and maintain the network availability and measurements quality
   => DORIS signal integrity monitoring
- Doris involvement in missions and performance required are always increasing
- $\Rightarrow$  This monitoring has become crucial
- A DORIS integrity team has been in charge since 2005
- 2 main parts of the work described today:
  - Maintain beacon network availability and signal quality
  - Check the consistency of information transmitted to instruments



# **DORIS beacon network monitoring**

## Daily monitoring Weekly monitoring Long term investigations

# ¢ cnes

## **Daily monitoring**

## Objective:

### Control the beacons' status

• With respect to several parameters

### • Detect any major problem on the network

• Transmission interruption, signal degradation...

### First investigations and actions

- Information request to host agency
- Corrective action definition and application

# **COES** DORIS beacon network global status



### Permits to detect major defaults:

- Beacon transmitting erroneous data or in a non nominal mode
- Non received beacons
- Low power level beacons



- DIODE navigator : first customer of DORIS signal
- Calculates a real time orbit sensitive to almost any perturbation
- => DIODE quality index used to detect noisy measurements
  - Unexpected peaks are analysed.
  - Once the default identified, corrective actions are defined and performed





# **DORIS beacon network monitoring**

Daily monitoring Weekly monitoring Long term investigations

IDS WORKSHOP



Weekly monitoring

## ■ Objective:

- Identify trends or upcoming degradation
- Anticipate default in order to fix it before a strong impact

Crosscheck of several reception statistics calculated over the same 1 week period

# **CORIS** DORIS instrument statistics

### Statistics giving the network status from the instrument point of view Based only on instrument telemetry data

### Allows :

- To check instruments programming and processing
- To detect upcoming transmission default (loss or quality degradation)

Qualité des mesures reçues pour Cryosat2

#### Measurements reception w.r.t. instrument programming



#### Quality of received measurements : Measurements validity on the two channels



**IDS WORKSHOP** 

21-22/10/2010

- 🗆 ×



Statistics (maps) giving the network status from ground processing's point of view Provide information about measurements quality

2 maps available :

### MOE map

Beacons plotted function of the MOE results on their measurements

### Technological map

Based on measurements quality w.r.t. technological criteria (consistency between the two channel, power level, transmission mode...)





# Link budget analysis

## Principle

- Power level measured on-board is compared to a theoretical power level
- Discrepancies are plotted as a function of elevation for each beacon



**IDS WORKSHOP** 



# **DORIS beacon network monitoring**

Daily monitoring Weekly monitoring Long term investigations

IDS WORKSHOP



# Long term investigations (1)

## • Objective :

- Evaluate Doris site quality
- Quality analysed with respect to
  - Power level,
  - POE residuals
- Analysis over a long period (at least 6 months of data)
- Illustrated via geographic maps
- Cf. article "Impact of DORIS Ground Antennas Environment on Their Radio Signal Quality"
  P. Yaya and C. Tourain; Advances in Space Research Volume 45, Issue 12, 15 June 2010



## Long term investigations (2) Greenbelt example

#### **Pylon suppressed from DORIS Pylon disturbing DORIS signal** antenna environment 2 GHz 🐭 Power level attenuation 2 GHz 5008 -2 -1 n 2 З -3 -2 3 wation = puiss. recue - puiss. attendue (dB) attenuation = puiss. recue - puiss. attendue (dB) 270 60' **POE residuals** montants montants 300' 315 0.8 -1.0 -0.8 -0.6 0.0 0.2 0.4 0.6 -0.4 -0.2 10 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 **IDS WORI** Moyenne des residus (mm/s) Moyenne des residus (mm/s)



# **DORIS system processing monitoring**



Besides radiofrequency signal, DORIS beacons transmit information
 Especially master beacons transmit broadcast uploads:

- Station coordinates
- Time links data

These data are important for DORIS real-time processing and performance.

• Error in these data can imply (slight) accuracy degradation of real-time products

## => Monitoring of DORIS instrument processing

• To detect any impact of erroneous data



- Reports generated by the instrument and transmitted via DORIS telemetry
- "Instrument talking to us"
- Gives the status of both :
  - DORIS on-board software
  - DIODE software
- Operational monitoring allows us :
  - To follow the behaviour of software.
  - To detect inconsistency in data transmitted by the beacons







# 

- DIODE navigator performs a time tagging used for platform application and measurements dating
- Process based on time links data transmitted by master beacons
  - $\Rightarrow$  On board time tagging accuracy directly linked to the accuracy of these data
- Consistency of these data is essential



Before upload : Time link data

# <u>After upload :</u> onboard time tagging performance monitored operationally



#### Drift or jumps are tracked to readjust time links if needed

# ¢ cnes

## Summary

Monitoring and analysis described previously were set :

- To simplify and accelerate detection of defaults,
- To identify possible improvements on the network.
- DORIS integrity team have now reached a high level of efficiency
  - Network availability : always over 75% since 2005 (mean 85%)
  - Reactivity : defaults are mostly detected and corrected before they impact users
  - Quality :
    - Iow-quality Doris stations are identified
    - some of them have already been improved in collaboration with installation and renovation team

## Work still on-going

- Reactivity : remote control (Iridium) of DORIS beacon under deployment
- DORIS site quality : continued effort to find quality factors and any source of improvement