

GRG AC status

Hugues Capdeville (CLS), Jean-Michel Lemoine (CNES), Adrien Mezerette (CLS)

CNES/CLS AC (GRG)

Status of CNES/CLS IDS Analysis Center

□ Status of the routine DORIS data processing

We processed DORIS data until Dec. 2024 (Serie grg56) and provided to IDS Combination Center.

SAA mitigation strategy on Sentinel-6A and HY-2C

The solutions HY-2C & 2D do not contribute to the scale determination of multi-satellite solution

we use the macromodel of Conrad et al. for Sentinel-6A

we use new GRGS TVG: CNES_GRGS.RL05MF_2024_08.shc

we use DPOD2020_V030 as apriori

We also provided Sentinel3-A&B and Sentinel-6A orbits to CPOD QWG for the whole year 2024 in the same processing configuration.

□ AC studies

In progress:

. . .

Finalyze the introduction of the SWOT satellite in the multi-satellite solution

Develop a strategy to mitigate the impact of increased solar activity on POD and on multi-satellite solution *(test recent atmospheric density models done, adjust more drag coefficient (from 1/4H to 1/1H))* Analyzing the Impact of GPS Clock as the modelled DORIS USO on Station Position Estimation for Sentinel Satellites

Impact of the CONRAD model on POD and Geocenter

OPR Acceleration Amplitude for Sentinel-6A

- CNES 6-plate macromodel (from the document DorisSatelliteModels.pdf):
 Cr estimated at 1.06
- Conrad 12-plate macromodel, tuned with GNSS data by Alex Conrad et al. from JPL. Cr estimated 1.02

The Conrad macromodel allows for reducing the OPR tangentiel amplitude

Impact of the CONRAD model on POD and Geocenter

Geocenter from S6A single satellite solution (comparison of each solution DPOD2020.v030)

- In magenta S6A single satellite solution obtained with CNES macromodel
- In yellow S6A single satellite solution obtained with Conrad model
- In red the Geocenter model from ITRF2020 of Z. Altamimi.

The Conrad macromodel helps reduce the signature at the 59-day period (half the draconitic period of Sentinel-6A) on the z geocenter component.

\$@₽

Latest additions:

Macromodel available at: <u>https://ids-doris.org/documents/BC/satellites/DORISSatelliteModels.pdf</u> Attitude:

Quaternions Nominal attitude implemented

We have estimated the Radiation pressure scale coefficient: 0.98.

• First results:

We processed SWOT DORIS data from February 2023 to December 2024.

POD results

orbit residuals and OPR empirical acceleration amplitudes comparisons to the CNES POD team orbit POE-F

Evaluation of SWOT single satellite solution by comparison to DPOD2020.v03

DORIS RMS of fit

- **SWOT** (from Feb. 2023 to Dec. 2024)
- Sentinel-3A & 6A (from Aug. 2021 to Dec. 2024)

 The DORIS RMS residuals for SWOT and Sentinel-3A are at the same level.

OPR Acceleration Amplitude

As for Sentinel-3A, for SWOT, the level of the OPR amplitude is correct for the two directions, Along-track and Cross-track.
 For Sentinel-3A, there is a degradation in the along-track amplitude from early 2023 (as the solar flux increases).

Comparison to external orbit POE-F

Daily Average and RMS radial orbit differences (in cm)

(from Feb. 2023 to Dec. 2024)

 For SWOT, there is a good agreement between GRG orbit and CNES orbit (< 1cm RMS).

 For Sentinel-3A, there is a more significant degradation at the end of 2024 (as the solar flux increases).

□ Comparison of each solution to DPOD2020.v030 (computed by CATREF)

- In green SWOT single satellite solution
- In blue: Multi-satellite solution wo SWOT
- In red: Multi-satellite solution w SWOT
- The contribution of SWOT causes an increase in the multi-satellite scale

Comparison of each solution to DPOD2020.v030 (computed by CATREF)

- In green: SWOT single satellite solution. The discrepancy is higher
- In blue: Multi-satellite solution wo SWOT
- In red: Multi-satellite solution w SWOT
- In magenta: the Geocenter model from ITRF2020 (by Z. Altamimi)
- There is no impact on the geocenter when SWOT is added to the multisatellite.

Scale from GRG solutions

□ Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	Inclination (degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971
SWOT	77	891

Scale Factor from grg solutions

- Highest scale levels:
- 1) HY-2C and HY-2D
- 2) SWOT
- 3) Sentinel-6A (Drift), SAA?

 Lowest scale levels: Sentinel-3A, 3B, Cryosat-2, Saral and Jason-3 But slight increase at the end of 2024.

 In blue: Multi-satellite solution wo SWOT in which HY-2C and HY-2D solutions do not contribute to the scale.

Origin from single satellite solutions

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	Inclination (degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971
SWOT	77	891

- Tx: good agreement between the multi-satellite solution and geocenter solution from Z Altamimi. Degradation end 2024. There is a bias for Jason-3, and for HY-2C&2D, SWOT.
- Ty: there is a good agreement between the single satellite solutions. Good agreement between the multi-satellite solution and geocenter solution from Z Altamimi.
- Tz: correct agreement between the multi-satellite solution and geocenter solution from Z Altamimi. But the single satellites are quite scattered.

Impact of increased solar activity on POD

OPR Acceleration Amplitude (along-track)

• For Sentinel-3A, there is a degradation in the along-track amplitude from early 2023 as the solar flux increases. No impact for Sentinel-6A which has a higher altitude.

Comparison to JPL orbit Daily RMS orbit differences (in cm)

(from Aug. 2021 Dec. 2024)

• For Sentinel-3A, the agreement between GRG orbit and JPL orbit deteriorates as the solar flux increases.

• For Sentinel-6A, the agreement between GRG orbit and external orbit is similar over the entire period (~0.6 cm RMS), even when the solar flux is higher.

Future work

- Continue to analyze Origin and Scale factor from single satellite and multi-satellite solutions
- We plan to continue the evaluation of GRG orbits:

by comparisons to internal orbits with GNSS by comparison to external orbits by Independent SLR RMS of fit by Altimeter crossover Cycles

- Develop a strategy to mitigate the impact of the increased solar activity
- Finalize the introduction of SWOT in our processing chain
- Contribution to the IDS Working Group:

. . .

Analyzing the Impact of GPS Clock as the modelled DORIS USO on Station Position Estimation for Sentinel Satellites (Presentation scheduled at the EGU)

 Preparation for the GENESIS mission: Tri-technique (SLR+GNSS+DORIS) combination for LEO single satellites as Sentinel-6A, 3A&B, Jason-3..

