IDS AWG November 28, 2023

GRG AC status

Hugues Capdeville (CLS), Jean-Michel Lemoine (CNES), Adrien Mezerette (CLS)

CNES/CLS AC (GRG)

Status of CNES/CLS IDS Analysis Center

□ Status of the routine DORIS data processing

We processed DORIS data until Sept. 2023 (Serie GRG53) and provided to IDS Combination Center. we apply SAA mitigation strategy on Sentinel-6A and HY-2C we use cnes_grgs_rl05 gravity model we use DPOD2020 as apriori We provided Sentinel3-A&B and Sentinel-6A orbits to CPOD QWG until Sept 2023.

□ AC studies

Analyses of the CNES/CLS IDS AC solutions (multi-satellite and single satellites solutions) Impact of increased solar activity on POD

In progress:

. . .

Introduction of the SWOT satellite in our processing chain Determination of quaternions (BUS+solar panel) files for HY-2C and HY-2D satellites in ORBEX format Evaluation of DPOD2020 version 2 with annual and semi-annual terms

□ Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	Inclination (degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971

Scale Factor from single satellite solutions

HY-2C and HY-2D scales are higher (offset in Z direction of DORIS CoP?).

Multi-satellite solution in dark green.

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	Inclination (degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971

Scale Factor from single satellite solutions

- Multi-satellite solution in dark green.
- In purple: Multi-satellite solution in which HY-2C and HY-2D solution do not contribute to the scale.

Comparison of each solution to DPOD2020 (computed by CATREF)

Tx from single satellite solutions

There is a good agreement between the single satellite solutions (slightly less good in 2021).

As shown by the IDS CC, there is a jump in March 2023, also present in the single satellite solutions (more or less strong depending on the solution)

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE	Inclination (degree)	Altitude (km)
Cryosat-2	92	717
Saral	98.65	750
Jason-3	66.04	1336
Sentinel-3A	98.65	814
Sentinel-3B	98.65	814
Sentinel-6	66.04	1336
HY-2C	66	971
HY-2D	66	971

Ty from single satellite solutions

- The multi-satellite TY is stable.
- There is a good agreement between the single satellite solutions. Less since the beginning of the year 2023?

Comparison of each solution to DPOD2020 (computed by CATREF)

SATELLITE

Cryosat-2

Saral

Jason-3

Sentinel-3A

Sentinel-3B

Sentinel-6

HY-2C

HY-2D

(degree)

92

98.65

66.04

98.65

98.65

66.04

66

66

Tz from single satellite solutions

Saral has a small bias (offset in normal direction of DORIS CoP?).

There is 118 days signature for Jason-3 and for Sentinel-6A (stronger on Jason-3).

Impact of increased solar activity on POD

DORIS RMS of fit

• Sentinel-3A (from Jan. 2021 to Sept. 2023)

- The DORIS RMS residuals for Sentinel-3A increase significantly from early 2023 like the solar flux.
- For Sentinel-6A, the correlation is less clear.

Impact of increased solar activity on POD

□ OPR Acceleration Amplitude (along-track)

For Sentinel-3A, there is a degradation in the along-track amplitude from early 2023 as the solar flux increases.
We see no impact for Sentinel-6A which has a higher amplitude.

Impact of increased solar activity on POD

Comparison to external orbit

Weekly RMS orbit differences (in cm)

• Sentinel-3A (from Jan. 2021 to Sept. 2023)

• Sentinel-6A (from Jan. 2021 to Sept. 2023)

• For Sentinel-3A, the agreement between GRG orbit and external orbits deteriorates as the solar flux increases.

For Sentinel-6A, the agreement between GRG orbit and external orbits is similar over the entire period (~0.7 cm RMS), even when the solar flux is higher.

Impact of increased solar activity on Tx ?

Comparison of each solution to DPOD2020 (computed by CATREF)

Tx from single satellite solutions

- As shown by the IDS CC, there is a jump in March 2023, also present in the single satellite solutions (more or less strong depending on the solution). The jump is more obvious for lower satellites (like Saral and Sentinel-3B).
- This could be due to the impact of increased solar activity.

Introduction of SWOT in GRG processing chain

Latest additions:

Macromodel available at: <u>https://ids-doris.org/documents/BC/satellites/DORISSatelliteModels.pdf</u> Attitude: Quaternions

Nominal attitude law not yet implemented

Preliminary results:

Few results, due to the lack of quaternions.

The level of DORIS residuals, and the OPR amplitudes are good.

The agreement with POEF is also good, around 8.5 mm RMS for radial orbit difference.

	DORIS	OPR amplitude ave		
SATELLITE	RMS (mm/s)	Along-track	Cross-track	Radial orbit RMS difference (mm) with POE-F
Sentinel-3A	0.382	3.5	2.8	11
Sentinel-3B	0.401	3.4	2.6	11
Sentinel-6MF	0.371	1.9	2.7	6.5
HY-2D	0.370	2.6	2.1	7.3
SWOT	0.380	2.9	3.8	8.5

Attitude exchange using ORBEX

- □ ORBEX provides information on the satellite orientation
- Orientation given using the quaternion representation
- □ Widely used in the GNSS domain
- □ Meta data in header:
- EPOCH_INTERVAL : the spacing between each epoch
- TIME_SYSTEM: TAI, UTC, GPS
- FRAME_TYPE: INE (inertial), ECEF (Earth-Centered, Earth-Fixed)
- □ Key/value pairs for each epoch:
- ATT: gives the attitude quaternions in the reference frame

s=ORBEX 0.09	
6%	
FILE/DESCRIPTION	
DESCRIPTION	Attitude quaternions for grg/grm products
CREATED_BY	CNES-CLS IGS-AC
CREATION_DATE	2022 03 01 13 15 10
INPUT_DATA	u+U
CONTACT	igs-ac@cls.fr
TIME_SYSTEM	GPS
START_TIME	2022 02 24 00 00 0.00000000000
END_TIME	2022 02 24 23 55 0.000000000000
EPOCH_INTERVAL	300.000
COORD_SYSTEM	IGS14
FRAME_TYPE	ECEF
ORBIT_TYPE	FIT
LIST_OF_REC_TYPES	ATT
FILE/DESCRIPTION	

+EPHEMERIS/DATA				
*ATT RECORDS: TRANSF	FORMATION FROM TERRESTRIA	L FRAME COORDINATES	(T) TO SAT. BODY FRA	ME ONES (B) SUCH AS
*	(0,B) = q.	(0,T).trans(q)		
*REC ID_	Nq0_(scalar)	q1x	q2y	q3z
## 2022 02 24 00 00	0.00000000000 50			
ATT E01	4 0.0818006698101173	-0.2149178684197441	0.6372632756423002	0.7355368636378298
ATT E02	4 0.2135123129484599	0.0811600232538931	-0.7337406813437488	0.6398829231867637
ATT E03	4 0.2488197825386463	0.0564189412555211	-0.9121903687621332	0.3206467683021779
ATT E04	4 -0.0592402382002847	0.1147267377193328	0.2895012946222156	0.9484288957229813
ATT FOR		0.0045070547440040		0.0004000470700470

Attitude exchange using ORBEX

- □ ORBEX format was developed to describe GNSS satellites
- solar panels orientations are not part of the original format which are useful when dealing with LEO satellites

- □ Format extension for LEO satellites, 2 additional keys :
- SP1/SP2: gives the orientation of the solar panels in the satellite frame

%=ORBEX 0.09 %% +FILE/DESCRIPTION DESCRIPTION Attitude quaternions
%% +FILE/DESCRIPTION DESCRIPTION Attitude quaternions
+FILE/DESCRIPTION DESCRIPTION Attitude quaternions
DESCRIPTION Attitude quaternions
CREATED_BY CNES-CLS IGS-AC
CREATION_DATE 2023 06 13 12 13 29
CONTACT igs-ac@cls.fr
TIME_SYSTEM TAI
START_TIME 2023 03 14 00 00 0.0000000000
END_TIME 2023 03 20 00 00 0.0000000000
EPOCH INTERVAL 30
COORD_SYSTEM IGS20
FRAME_TYPE INE
LIST_OF_REC_TYPES ATT_SP1_SP2
-FILE/DESCRIPTION
+SATELLITE/ID AND DESCRIPTION
SWOT
-SATELLITE/ID AND DESCRIPTION
+EPHEMERIS/DATA -
*ATT RECORDS: TRANSFORMATION FROM TERRESTRIAL FRAME COORDINATES (T) TO
* $(0,B) = q.(0,T).trans(q)$
*REC ID N q0 scalar q1 x q2 y q3 z
2023 03 14 00 00 0.000000000000 1
ATT SWOT 4 0.7454095 -0.2023413 0.6229767 -0.1237849
SP1 SWOT 4 0.9659258 -0.2588190 -0.0000000 0.0000000
SP2 SWOT 4 0.0000000 0.0000000 0.2588190 0.9659258
2023 03 14 00 00 30.00000000000 1
ATT SWOT 4 0.7547335 -0.2013071 0.6112403 -0.1274289
SP1 SW0T 4 0.9659258 -0.2588190 -0.0000000 0.0000000
SP2 SW0T 4 0.0000000 0.0000000 0.2588190 0.9659258
2023 03 14 00 01 0.00000000000 1
ATT SWOT 4 0.7638683 -0.2002416 0.5993701 -0.1310117
SP1 SWOT 4 0.9659258 -0.2588190 -0.0000000 0.0000000
SP2 SWOT 4 0.0000000 0.0000000 0.2588190 0.9659258

Attitude exchange using ORBEX

- □ Our processing software GINS can read and generate ORBEX files for all DORIS missions.
- □ HY-2C & HY-2D : we can produce ORBEX files to help implementing the nominal attitude law.
- □ SWOT : we developed a python script to convert the original attitude NetCDF file into ORBEX. If needed, we can share this tool.

Future work

- Continue to analyze Origin and Scale factor from single satellite solutions
- We plan to continue the evaluation of GRG orbits:

by comparisons to internal orbits with GNSS by comparison to external orbits by Independent SLR RMS of fit by Altimeter crossover Cycles

- Define a strategy to mitigate the impact of the solar activity
- Finalize the introduction of SWOT in our processing chain
- To mitigate SAA effect introduction of GPS epochwise estimated onboard clocks Possible with at least Sentinel-3A, Sentinel-3B and Sentinel-6MF.
- Finalize the implementation of the second order ionospheric correction for DORIS measurement.

Jalabert et al., 2018. Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning, Adv. Space Res.

Štěpánek et al., U., 2020. Inclusion of GPS clock estimates for satellites Sentinel-3A/3B in DORIS geodetic solutions, J. Geod.

