

The current status and future plans of GOP AC

Petr Štěpánek, Vratislav Filler

Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech republic

Department of Geodetic Observatory Pecný

Current status

- Weekly SINEX files delivered until 3Q/2022
- 4Q/2022 processed and SINEX files are ready for delivery
- Sentinel-6 quaternions applied (previous experiments with nominal attitude)
- Hy-2C and Hy-2D macromodels and nominal attitude models implemented
- 4Q/2022 solutions of various satellite constellation and single satellite solutions – analyzing the effect of Sentinel-6 and Hy-2C,2D
- Alias for SAA stations Jason-3, Sentinel-6 and Hy-2C

Coming soon

- Sentinel-6, Hy-2C,2D satellites processing evaluation longer series
- Some modification in GOP Sinex (elimination of "alias" stations)
- Inspection of the GOP Tx.Ty.Tz series (Ty bias reported by Guilhem)
 - Check if the effect is satellite specific or not)
 - ➤ Understand why I do not observe it in my analysis as significant as Guilhem (different transformation key station selection criterions etc.)
- Single satellite solutions as a standard output together with operational series
- DORIS-only SP3 orbits

Future prospects

Sentinel project with TUM Munich (prof. Urs Hugentobler)

- Proposal in preparation
- 2024-2026
- DORIS USO observation by GNSS (continue previous work)
- Stochastic USO model
- DORIS phase processing experiment
- Sentinel-3 tandem phase
- Simulation of DORIS system with all clocks linked to GNSS

Cooperation with University Bern (Rolf Dach)

- TRF evaluation using DORIS, GNSS, SLR
- Merge DORIS version of Bernese and official version
 - > after 8 years of independent evolution
 - ➤ About 1500 files of modified source code

Single satellite solution scale vs. ITRF2014

- Largest scale for new satellites
- The same effect observed by GRG for Hy-2C and Hy-2D

Observation residuals for stations, Hy-2C and Hy-2D

 Strong SAA effect for Hy-2C (as also reported by Hugues Capdeville/GRG AC at IDS Workshop 2022)

POD, comparison with CNES/SSALTO multi-technique orbits

Along track offset for Sentinel-6

Sat	Mean radial (cm)	Mean along (cm)	Mean cross (cm)	RMS r adial (cm)	RMS along (cm)	RMS cross (cm)
Sentinel-6	-0.1	-2.9	0.0	0.9	2.8	4.0
Hy-2C	0.0	-0.1	0.2	1.0	3.0	4.2
Hy-2D	0.0	-0.2	0.1	1.0	2.8	2.7

Estimated SRP coefficient

 Higher for Hy -2C/2D. Attitude mismodeling?

Sat	SRP
Sentinel-6	0.999
Hy-2C	1.061
Hy-2D	1.049

Transformation parameters vs. DPOD2014

- About 2.7 mm increment of the scale when including Sentinel-6 and Hy-2C/2D
- Reduction of Tz variations
- Increment of Tx variations (but too short series to analyze annual and semiannual effects)

Sat combination	TX (mm)	Ty (mm)	Tz (mm)	Scale (mm)
Cryosat-2, Saral, Sentinel -3A, 3B, Jason-3 (= 5 sats)	4.6±2.0	-3.5±3.9	7.0±14.1	5.9±1.4
5sats + Sentinel-6	2.1±2.6	-1.8±3.8	5.1±11.2	7.1±1.7
5sats + Hy-2D	3.5±2.6	-2.4±4.3	8.5±8.4	7.1±1.4
5sats + Sentinel-6 + Hy-2D	2.3±2.1	-2.8±4.3	9.2±9.1	8.2±1.4
5sats + Sentinel-6 + Hy-2D, 2C	0.9±2.5	-1.5±4.1	7.7±8.4	8.6±1.5

Pole vs. IERS C04 model

Slight improvement including Sentinel-6 and Hy-2C/2D

Sat combination	Xp Mean(mas)	Yp Mean(mas)	Xp RMS(mas)	Yp RMS(mas)
Cryosat-2, Saral, Sentinel -3A, 3B, Jason-3 (= 5 sats)	0.19	-0.08	0.38	0.38
5sats + Sentinel-6	0.15	-0.02	0.38	0.38
5sats + Hy-2D	0.21	-0.10	0.39	0.39
5sats + Sentinel-6 + Hy-2D	0.16	-0.05	0.34	0.38
5sats + Sentinel-6 + Hy-2D, 2C	0.14	0.00	0.34	0.36

Station weekly repeatability WRMS

Improvement when including Hy-2C/2D and Sentinel-6A

Sat combination	Lat (mm)	Lon (mm)	H (mm)
Cryosat-2, Saral, Sentinel -3A, 3B, Jason-3 (= 5 sats)	6.55	8.98	7.65
5sats + Sentinel-6	6.55	8.97	7.49
5sats + Hy-2D	6.29	8.40	7.24
5sats + Sentinel-6 + Hy-2D	6.22	8.04	7.00
5sats + Sentinel-6 + Hy-2D, 2C	6.25	7.86	6.90

Thanks for your attention!