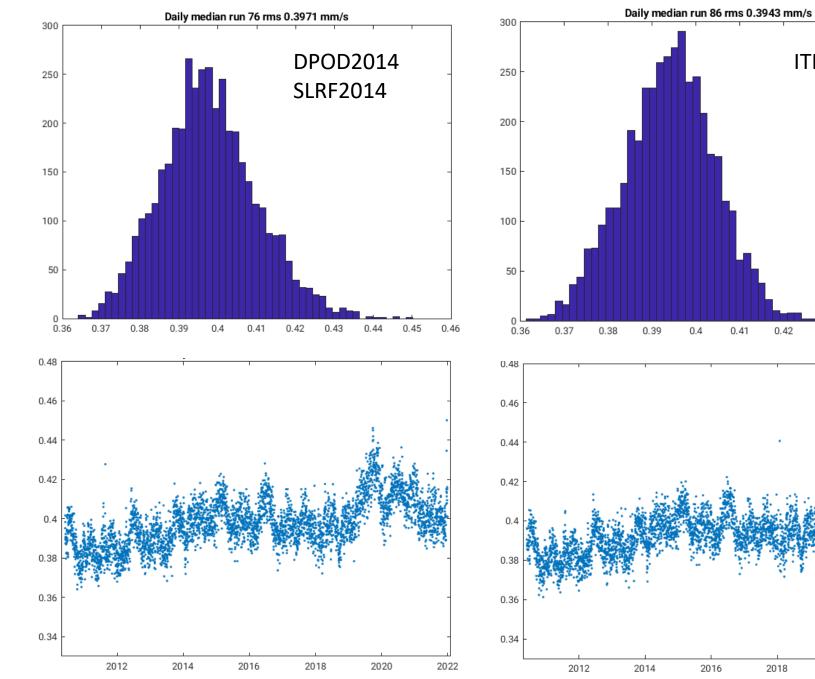
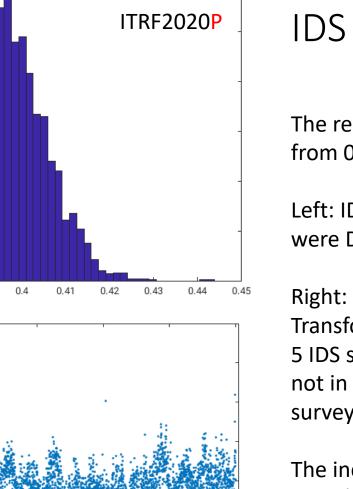
Progress of the TU Delft Activities and ASR DORIS special issue status

Ernst Schrama Delft University of Technology, The Netherlands e.j.o.schrama@tudelft.nl

Content


- POD of CryoSat-2
 - Implementation of ITRF2020P
 - TVG transition between GRACE and GRACE-FO
- IDS special issue
- Presentation updated relative to what I've sent prior to the mtg.


Orbit Determination of CryoSat-2

- Satellite status,
 - All looks ok, no major problems
 - Alignment maneuvers with ICESAT-2, regular maneuvers, debris maneuvers
 - Occasional download issues at the ground terminal(s),
- There are 975 arcs, on average 6 days in length, partial overlap
- Activities starting in June 2010 up to start of 2022
- AOCS: three star cameras, we use them to determine nominal attitude law period
 - During maneuvers the nominal attitude law is interrupted (4 degree yaw steering mode)
 - Quaternions of the S/C are provided by FTP (one month delay)
- CS2 increasingly depends on realistic dynamic modelling:
 - DORIS tracking is not like GNSS tracking, there is less geographic coverage
 - SLR data is used to validate the POD process independently
- CS2 POD is a test case for evaluating TVG transition GRACE to GRACE-FO

Modelling (1)

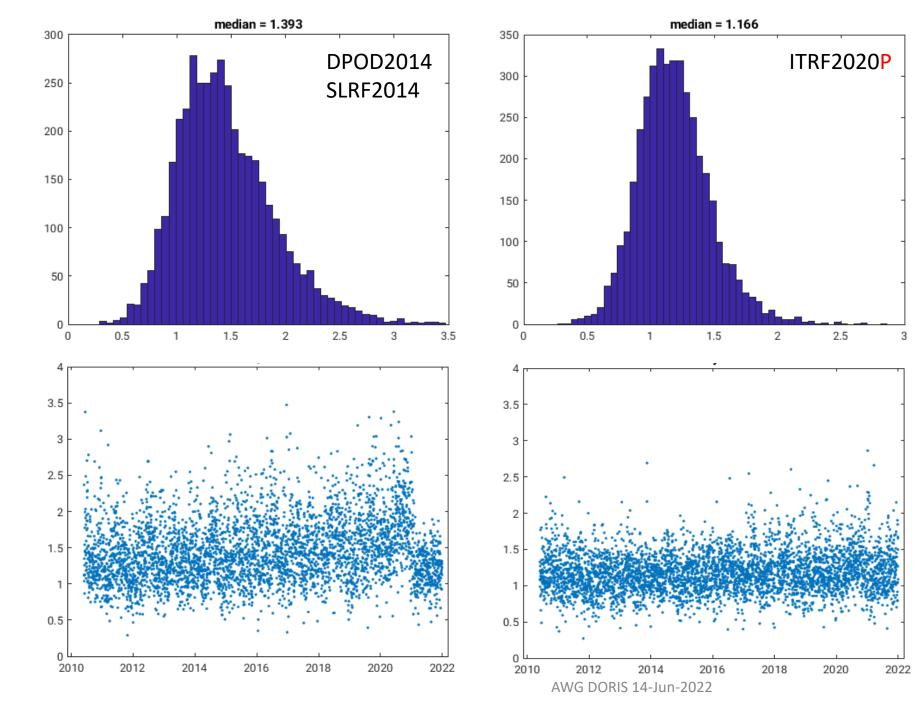
- Coordinates
 - DPOD2014 IDS coordinates and ITRF2014 SLR coordinates
 - Transition to ITRF2020 for all Doppler and SLR stations
- Ocean loading by station/beacon
 - Chalmers ocean loading calculator based op FES2012 or similar
- Doppler beacon frequency offset estimated by pass
- Tropospheric zenith delay parameters estimated by pass
- Earth rotation parameters from IERS EOP 14 CO4
- Initialization first state vector from Diode navigator orbits
- More rigorous editing to reject noisy data

2016

2018

2020

2022

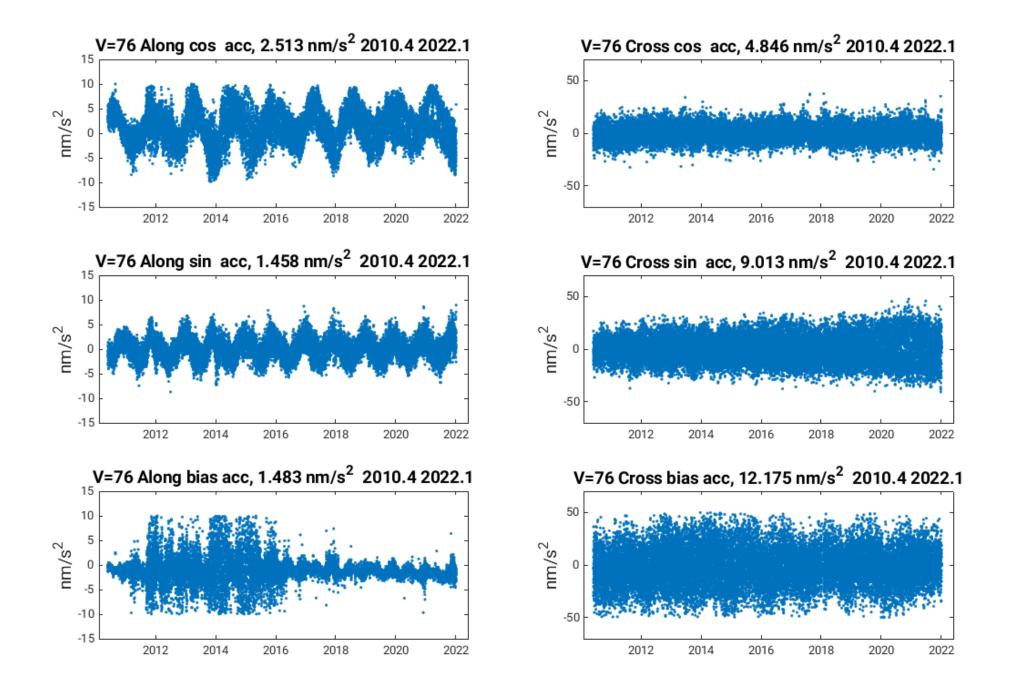

IDS residuals

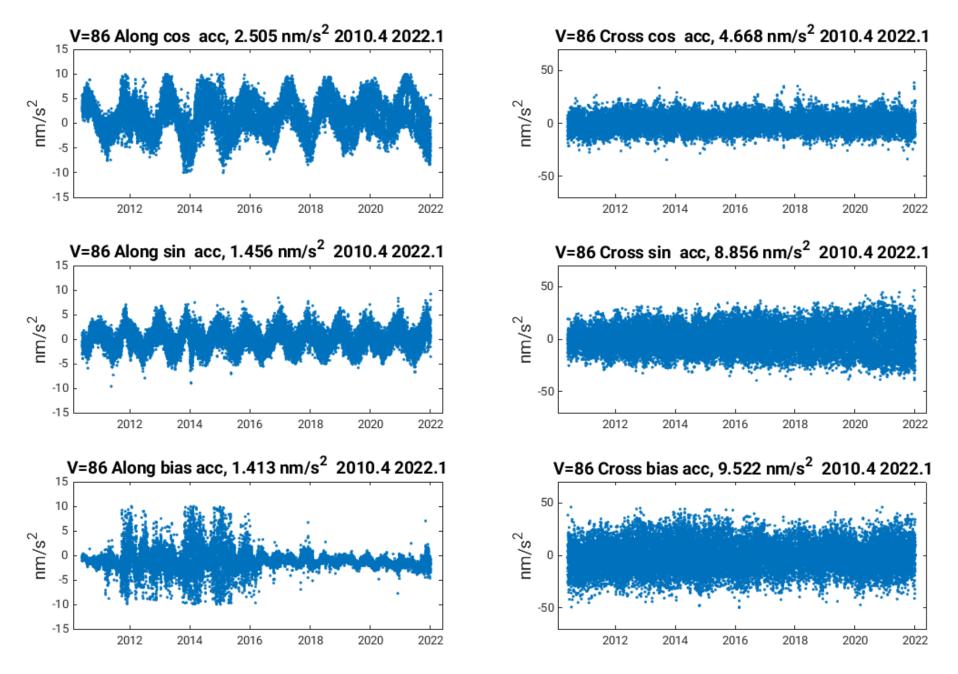
The residuals improve from 0.3971 to 0.3943 mm/s

Left: IDS coordinates were DPOD2014

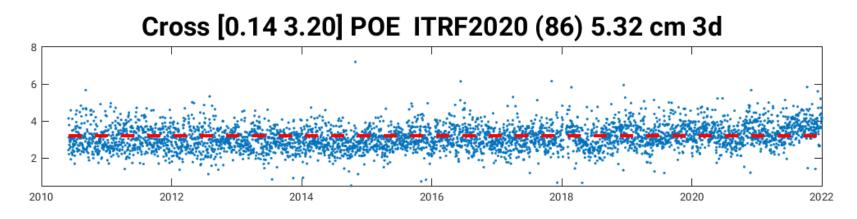
Right: Everything is Transformed in ITRF2020, 5 IDS stations that were not in the ITRF had survey coordinates.

The increase observed in 2019/2020 is probably related to the ITRF

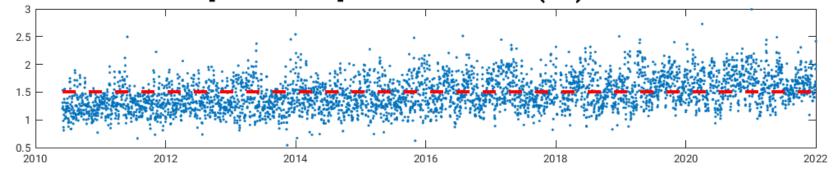


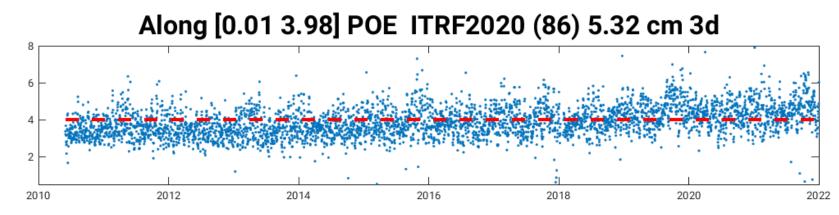

SLR daily mean rms

The residuals improve from 1.393 to 1.166 cm


Left: SLR coordinates were from an old scaled Of the ITRF, the IDS Coordinates were in DPOD2014

Right: Everything is Transformed in ITRF2020, 5 IDS stations that were not in the ITRF had survey coordinates.



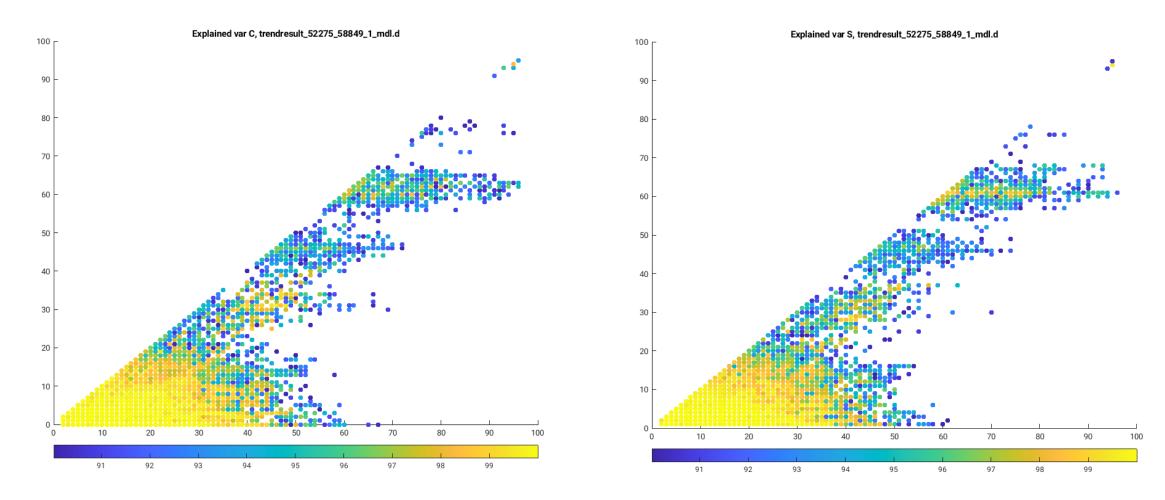


There could be a gas leakage problem (needs to be verified)

Radial [-0.05 1.50] POE ITRF2020 (86) 5.32 cm 3d

Modelling (2)

- Gravity models, static part from GRACE/GRACE-FO
- Solar radiation pressure modelling, scaling constant est. once, CNES model
- Drag modelling, MSIS reference model, 3 hourly patches with constraints
- Ocean tides affecting the orbit: via FES 2012 model
- Atmospheric and Oceanic part TVG : AOD1B
- Cryosphere and Hydrology part : via GRACE and GRACE-FO
- Generalized accelerations for along-track, cross-track by once per revolution and a constant bias by arc.
- Solve for empirical accelerations, 6 hourly, patches, piecewise modelling.


TVG modelling for TWS component

- Always take AOD1B for each arc, without doubts residuals both for DORIS and SLR benefit from this
- TWS part comes from GRACE and GRACE-FO
- Data gap in GRACE is from 23-5-2017 to 15–6-2018
- GRACE-FO: 15-6-18 -> 19-7-18; 31-10-18 -> 31-12-21
- Q1 : does the gap affect POD processing
- Q2 : can you combine GRACE and GRACE-FO

TVG model strategy

- Fit a polynomial + harmonic function to the data
- Harmonic on multiples of 2 year period
- Polynomial: 3 or 6 terms
- Select those SH terms where the explained variance of the model is greater than 99%
- Most of the TVG information is contained up to degree and order 36 with some resonant bands at higher degree

Variance explained model (window 2002-2019)

TVG models available

			Along	Along	Along	Cross	Cross	Cross			
ID	mm/s	cm	cos	sin	bias	cos	sin	bias	TVG	#pars	AOD1B
70	0,4036	1,6748							GR	14	Y
71	0,3982	1,4623	2,114	1,666	1,421	4,886	7,535	9,785	GR+GRFO	14	Y
72	0,3985	1,4775	2,110	1,673	1,424	4,749	7,495	9,763	GR+GRFO	14	Y
73	0,3983	1,4627	2,153	1,662	1,422	4,913	7,398	9,743	GR	11	Y
74	0,3983	1,4639	2,117	1,669	1,423	4,888	7,556	9,824	GR+GRFO	11	Y
75	0,3984	1,4740	2,122	1,681	1,422	5,020	7,809	9,881	GR+GRFO	11	Y
76	0,3983	1,4880	2,507	1,442	1,414	4,689	8,732	9,909			Y
77	0,4127	1,7737									

Runs 70 and 73 : TVG only GRACE, Runs 71 and 74 GR(all) + GRFO, Runs 72 and 75 (GRACE since 2010 + GRFO)

Compare to AOD1B run (=76)

ID	Along summed	Cross summed	Delta Along	Delta Cross
71	3,044	13,281	0,176	0,739
72	3,046	13,193	0,174	0,827
73	3,069	13,183	0,151	0,837
74	3,048	13,323	0,172	0,697
75	3 <i>,</i> 058	13,558	0,162	0,462
76	3,219	14,015		

The simulated signal of the TVG model shows approximately 0.6 and 1.6 nm/s² for the along and the cross track components

Conclusions

- ITRF2020P works out better compared to what we had
- CryoSat-2 POD depends for a part on TVG modelling
- Bridge the 2017-2018.5 GRACE to GRACE-FO transition gap
- Ocean/Atmosphere is a separate activity, AOD1B always available,
- SLR residuals are more affected than Doppler residuals
- Cryosphere/Hydrology/Ocean effect comes from GRACE/GRACE-FO
- Most combinations of GRACE and GRACE-FO show empirical accelerations compatible with a GRACE only result, needs to be repeated with the ITRF2020 setup

Open issues

ITRF2020P implementation

- Too early to show the results after a full implementation of what I found in the SINEX files (also needs ecc info and psd info)
- Missed stations in the observation files are fixed to the site survey results.

RINEX processing

• There are some preliminary results from a student thesis and separate tests, but no full implementation yet.

Special issue ASR on DORIS

- Denise Dettmering and Ernst Schrama (we) are ASR guest editors
- So far 8 papers are submitted of which 5 papers are accepted (4) or returned for minor revisions (1) not requiring a new review round
- As far as we know possibly one more paper will be submitted.
- Papers can be submitted until 1-July, the deadline was extended several times, various delay notices from authors
- I'm not sure whether we can convince the ASR editor to go past the deadline of 1-July, we haven't asked actually. It does not sound like a good idea.