

Status of the DORIS analysis center at IGN-IPGP in 2022

<u>A. Pollet & S. Nahmani</u>

IDS AWG meeting 14th June 2022

Status of the IGN CA

- Satellites:

SPOT 2,3,4 & 5 ; JASON 1,2 & 3 ; SENTINEL 3 A & B ; HY2A ; SARAL (Attitudes/ quaternions + Macromodels ok)

Envisat & Topex (Macromodels ok, it remains to implement the attitude laws)

- Data : Doppler & Rinex
- Tools to provide the SP3 orbit files for DORIS satellites
- The first « operational » scripts to process DORIS data with GipsyX have been developed (see below for the first results obtained)

First tests : models, parameters and solution descriptions

- Daily arcs with 3h before and after to reduce board effects have been computed for Jason-2, Jason-3, SARAL and Sentinel-3A over 1 month (June 2014 for Jason-2, June 2018 for the other satellites).

- The sentinel 3A macromodel used by JPL differs from the macromodel recommanded by IDS for ITRF2020 repro. The main difference correspond to a different rotation axis of the solar panels.

- The rinex data process consist to recreate doppler observations from the phase measurements.

- The SAA stations are removed for all satellites except SARAL.

New Orleans, LA & Online Everywhere 13–17 December 2021

Orbit and satellite modeling					
Earth's gravity field	EIGEN-GRGS.RL04MF				
Ocean tides	FES2004				
Thermosphere	DTM2000				
Orbital parameters	 Constants (sin and cos) per rev for along- and cross-track 3 drag coefficients per day Initial position and velocity 				
Sta	tion positions				
Reference frame	DPOD2014				
Ocean loading	FES2004				
Clock parameter	One parameter per 20 min (random-walk) per station and satellite				
Mea	surement delay				
Troposphere	VMF1				
Troposphere parameters	- ZTD per 30 min (random-walk) per station and satellite - 1 East and 1 North gradient per station and satellite				

First tests: Rinex versus Doppler

RMS of residuals over one month (June 2014) : 0.39 mm/s⁻¹ for the two solutions JAS2_IDS and JAS2_DOP_IDS : **No significative difference for the RMS of residuals**

Orbit difference between JAS2_IDS and JAS2_DOP_IDS over one month (June 2014):

	Radial (mm)	Along-track (mm)	Cross-track (mm)				
Orbit di	Orbit difference JAS2_IDS - JAS2_DOP_IDS						
MEAN	0.0	4.3	0.0				
RMS	1.7	8.4	8.9				
	Orbit overlap JAS2_IDS						
MEAN	0.1	0.6	0.7				
RMS	5.8	18.8	27.0				
Orbit overlap JAS2_DOP_IDS							
MEAN	0.3	1.1	0.6				
RMS	5.5	16.7	26.9				

A bias exists on the along-track component.

It seems to come from the DOP solution as it exists between the JAS2_DOP solution and the SSA POD solution.

First tests: quality check of the GipsyX orbit solutions

- * We compare the orbits computed with Gipsy-X and the POD orbits provided by SSALTO for few DORIS satellites.
- * For Jason-2, values provided by H. Capdeville for the comparison between the AC GRG orbits and SSA orbits..
- * The comparison is done over one month (June 2014 for JAS2 and June 2018 for the other satellites).

First tests: quality check of the GipsyX orbit solutions

	Radial (mm)	Along-track (mm)	Cross-track (mm)					
Orbit	difference J/	AS2_IDS – JAS2_SSA	l l					
MEAN	0.1	0.2	-0.9					
RMS	6.1	19.2	24.5					
Orbit	Orbit difference JAS2_GRG – JAS2_SSA							
RMS	7	21	19					
Orbit difference JAS3_IDS – JAS3_SSA								
MEAN	-0.1	0.6	-0.1					
RMS	8.3	27.7	28.7					
Orb	Orbit difference SRL_IDS – SRL_SSA							
MEAN	0.3	3.7	-1.1					
RMS	8.8	32.0	28.1					
Orbit difference S3A_IDS – S3A_SSA								
MEAN	0.1	-6.3	0.3					
RMS	8.4	33.8	21.3					

No significative bias detected.

For JASON-2, the quality of the Gipsy-X orbit is comparable to the GRG AC.

For other satellites, the level of precision seems pretty good (radial < 1 cm for all the satellites).

First tests: quality check of the GipsyX orbit solutions

Orbit difference between SRL_IDS and POD SSA for SARAL over 6 days (2018-06-20 to 2018-06-26)

First tests: macromodels comparison

- No significative difference for the RMS of residuals
- Orbit difference **over one month (June 2018 for S3A):**

Orbit difference S3A_IDS - S3A_JPL						
MEAN	-0.3	-0,1	3,0			
RMS	0,9	0,5	3,2			
Orbi	t difference	S3A_IDS - S3A_SSA				
MEAN	0.1	-6.3	0.3			
RMS	8.4	33.8	21.1			
Orbit difference S3A_JPL - S3A_SSA						
MEAN	0.5	-6.3	-2.8			
RMS	8.4	33.8	21.3			
Orbit overlap S3A_IDS						
MEAN	0.9	4.5	-1.4			
RMS	7.0	24.9	26.8			
Orbit overlap S3A_JPL						
MEAN	0.9	4.5	-1.5			
RMS	7.0	25.0	26.6			

The macromodel used by IDS and by JPL are equivalent, except over the cross-track component but it is impossible to determine the best one as the statistics and residuals are very close.

TESTS ITRF2020P

- Processing :

- 4 years of SENTINEL-3A (2017-2020)
- 2 years of SARAL (2015-2016) (Issue with 2014 under investigation)
- 4 years of JASON-2 (2010-2013)
- 3 years of SPOT-5 (2005-2007)
- 6 years of SPOT-2 (1998-2003)

(Issue with a priori orbits – Iteration probably needed in few cases)

- For each periods, computation with **DPOD**, **ITRF2020P wo & w annual/semi-annual signals**

Challenges for new DORIS users

- Raw data have to be cleaned :

* Some Rinex files present stations (with or without 1 measurements) which does not exist at the epoch of the rinex files !

* Some data have the wrong name of stations :

Fictional example: AAAA from 01-01-2000 to 12-10-2002

AAAB from 30-12-2002 to ...

The data files between 30-12-2002 and 10-01-2003 presents measurements from the station AAAA ...

We have check all the data of all the satellites and compare the stations present in the doppler/rinex files with the existing stations in DPOD or ITRF2020 !

- Inconsistency in some log files and log event in the ids website !

* Date problem between log files and log event (begin and end of stations)

* Inconsistency in log file between the Antenna part and the beacon part too

ITRF2020P : orbit comparison

wrt SSA (after 2010) / GRG (before 2010) - in mm

	Using D	POD		Using ITRF + PSD		Usin	Using ITRF + PSD + Freq				
	R	Т	Ν		R	Т	N		R	Т	Ν
S3A	6.0	23.7	17.9	S3A	6.4	23.6	18.9	S3A	6.4	23.7	18.9
SRL	6.3	28.2	24.0	SRL	7.7	31.5	26.3	SRL	7.7	31.6	26.2
JA2	5.2	18.5	19.2	JA2	5.7	20.1	21.3	JA2	5.7	20.1	21.4
SP5	6.0	22.5	18.8	SP5	5.8	22.9	19.8	SP5	5.8	22.8	19.8

- Medians of daily RMS

ITRF2020P : orbit comparison

ITRF2020P + PSD + Freqs / ITRF2020P + PSD

	R	Т	Ν
S3A	0.3	0.6	0.5
SRL	0.3	0.5	1.2
JA2	0.3	0.8	1.1
SP5	0.4	0.6	0.5

ITRF2020P + PSD + Freqs / DPOD

	R	Т	Ν
S3A	1.6	6.0	8.0
SRL	3.7	10.9	12.1
JA2	2.1	7.5	9.5
SP5	0.9	3.0	4.9

- Medians of daily RMS

ITRF2020P : 6h daily overlaps daily computation J ± 3h

Orbit overlaps - DPOD - in mm

	R	Т	Ν
S3A	3.5	14.8	8.8
SRL	5.4	24.7	15.5
JA2	3.8	13.3	9.9
SP5	3.6	16.4	9.2

Orbit overlaps - ITRF2020P - in mm

	R	Т	N
S3A	3.8	16.6	10.4
SRL	6.0	26.8	17.3
JA2	4.4	14.5	11.8
SP5	3.6	16.6	9.6

- Medians of daily overlap RMS

To do ...

- Send SP3 orbits for evaluation
- Send the list of detected errors in DORIS data to CNES
- Compute HY2A & CRYO2
- Estimate stations : mono satellite and multi satellites