Scale in DORIS solutions (downweighting and elevation cut off)

Petr Štěpánek, Hugues Capdeville, Guilhem Moreaux and Frank Lemoine

DORIS Scale is affected by

- Troposphere and ionosphere modeling
- SAA compensation strategy
- Elevation cut off
- Data elevation-derived downweighting
- Antenna PCO
- Antenna PCV
- SAA mitigation strategy
- Satellite constellation (systematic errors)

In the processing of Doppler data format also by application of

- CNES observations validation from the observation file
- Centre of mass corrections from the observation file

Agreement of individual AC scale in the recent operational series

- Only short time span
- Very good consistency and agreement of GRG and GSC (also with ITRF 2014)
- GOP about 10 mm higher (for the new series wd60 not dispalyed here 5-6 mm)
- IGN and INA more than 10 mm higher
- Scale discontinuity around January 2019 for IGN

Elevation cut off and data downweighting

- Effect of Elevation cut off and data downweigting demonstrated e.g. By Štěpánek and Filler, SGG, 2018; Capdeville et al., IDS AWG, 2016.
 - Confirmed by at least 2 ACs
- Associated with systematic elevation-dependent effect
 - Troposphere delay modeling ?
 - Onboard Antenna patern ?
 - > Multipath ?
- Effect can be observed/studied by residual analysis
 - Impact on ascending/descending Doppler observations with different sign
 - Onboard Antenna PCV ?
 - Multipath ?

Why downweighting ?

- Downweighting functions typically used are usually not corresponding to the residual RMS for elevation
- Number of the observation increases in low elevation (strong effect) results in "weak" contribution of higher elevation observations
- Possible systematic errors specific for low elevation
 - reduced by downweighting

Testing campaign (1.)

- GOP AC
- Data January December 2018
- 10 deg elevation cut off
- Weight = Sin² E Weight(definition) = $1/\sigma^2$
- 6 satellites
- SAA strategy for Jason-2, Jason-3
- New mean (secular) pole and gravity field model EIGEN RL04
- Analysis for ascending/descending residuals

Residuals per elevation (step 2 degrees)

Up and Down behavior

Similar behavior at least below Elev. = 18 deg

Asc/Des. difference is higher for Jasons in the lowest elevations

Residuals per elevation (step 2 degrees)

Similar behavior at least below Elev. = 18 deg

Asc/Des. difference is higher for Hy-2A in the lowest elevations

Residuals per elevation, (Asc-Desc)/2

Testing campaign (2.)

- GOP AC
- Data January March 2018
- 7, 10 deg elevation cut off
- Weight = Sin⁴ E, Sin² E, "CNES", No
- In total 8 different solutions
- 6 satellites
- SAA strategy for Jason-2, Jason-3
- New mean (secular) pole and gravity field model EIGEN RL04

Scale

- Multi-satellite solution
- Impact of the Cut off
- Impact of the downweighting (results in mm)

Weight	Cut off 10 deg	Cut off 7 deg
Νο	11.3	25.4
"CNES" *	7.5	12.0
Sin ² E	6.9	9.3
Sin⁴E	8.3	8.3

* Moyard et al., IDS AWG, 2016

Scale – single satellite

- Multi-satellite solution
- Impact of the Cut off (All)
- Impact of the downweighting (except for Cryosat and Saral cut off 10 deg)

(results in mm)

	Cut off 10 deg.		Cut off 7 deg.	
	Sin ² E	No weights	Sin ² E	No weights
Jason-2	7.7	17.9	11.0	39.6
Jason-3	10.0	16.2	15.6	33.4
Cryosat	9.8	8.7	11.9	23.0
Hy-2A	7.6	18.7	9.4	30.4
Saral	7.4	7.9	9.8	20.6
Sentinel-3A	2.4	6.8	4.8	20.2

Planned/possible extension of the experiments

- Go to 5 degrees cut off
- Longer series for 5, 7, 10 (12?) elevation cut off
- Other AC (at least residual analysis)
- Weight = Sin⁴ E, Sin² E, "CNES", No
- PCV model for onboard antenna (relative to PCO) ? See Aït-Lakbir et al., IDS AWG 2019

Discussion

- Dependence on elevation cut off /downweighting function
 - To be verified by other AC ?
- Consistent series ? to be verified by longer campaign
- Scale without satellite antenna calibration ?
 - How precisely we know the antenna PCO ?
 - Are used PCO values independent from SLR ?
 - IGS scale dependent on other technique (ITRF2014) or based on calibrated antennas (ITRF 2020)
- Definition of the scale for IDS solution contributing to ITRF2020
 - The same as for ITRF 2014 ?
- Recommendations for ACs
 - Downweighting, elevation cut off ?
 - Possibilities: the same for all, no recommendations, "soft" recommendations