A MODEL FOR DORIS USO IN THE SAA

E. Jalabert, F. Mercier\(^{(1)}\)

June 11-12, 2018

Toulouse, FRANCE

\(^{(1)}\) CNES POD Team, Toulouse, France
INTRODUCTION

• DORIS measurements rely on the precise knowledge of the Ultra Stable Oscillator (DORIS USO)

• The important radiations in the South Atlantic Anomaly (SAA) perturb the USO behavior by causing rapid frequency variations

• If these variations are not modelled: systematic errors

• Goal: a model of the frequency variations due to the SAA
 So far: on Jason3 and Sentinel3a
MODELLING : FREQUENCY BEHAVIOUR (1)

• Model based on observations of Sentinel3A USO

• Two phenomenon :
 • Drift when entering the SAA
 • Relaxation after exiting the SAA
MODELLING : FREQUENCY BEHAVIOUR (2)

- In order to reproduce the behaviour observed on Sentinel3A USO, two exponentials are added:
 - One describing the drift when the satellite enters the SAA
 - One describing the relaxation of the USO
MODELLING : FREQUENCY BEHAVIOUR (3)

- Model: USO frequency f is the sum of two exponentials

$$
df_1 = -\alpha_1 f_1 + \beta_1 a(t) \\
df_2 = -\alpha_2 f_2 + \beta_2 a(t)
$$

With:
- $\alpha_i = 1/\tau_i$: inverse of the time constant of the exponentials
- $a(t)$: the radiation exposure due to the SAA at time t
- β_i: gain linked to the exposure
MODELLING : PARAMETERS (1)

• α_i : cannot be estimated
 depends on the USO device

• Sentinel3a : the USO behaviour is known, and so are the time constants. (see « Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning. » Jalabert and Mercier)
 • $\alpha_1 = 1$ minute
 • $\alpha_2 = 20$ minutes

• Jason3 : the hypothesis is that the time constants are similar to those of Jason1. The values are read on the plot of the article « A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly », JM Lemoine and H. Capdeville
 • $\alpha_1 = 1$ minute
 • $\alpha_2 = 90$ minutes
• β_i : estimated during the orbit determination process

• $a(t)$: geographical grid from the article "A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly », JM Lemoine and H. Capdeville

$$\exp\left(-\frac{1}{2} \left[\frac{\text{lat} - \text{lat}_{\text{SAA}}}{\text{SAA}_\text{lat}_\text{extend}} \right]^2 \right) \times \exp\left(-\frac{1}{2} \left[\frac{\text{lon} - \text{lon}_{\text{SAA}}}{\text{SAA}_\text{lon}_\text{extend}} \right]^2 \right)$$

• The difficulty is to properly place the SAA on the Earth.
 • For Sentinel3a, the USO behaviour being known, it is straightforward.
 • But for Jason3, the SAA was placed empirically.
The area where the drift in the USO occurs can be plotted.
The chosen positioning of the area is satisfying because it corrects the SAA peaks in the DORIS USO.

Note: the drift coming from the integration of the model is small enough not to perturb the time tagging. (3 10^{-8} sec / 9 days, i.e 7mm over 1 pass)
MODELLING : JASON3 SAA GRID

- The positioning of the SAA area is empirical.
- Two ellipse are necessary to better represent the area.

```
// 1er patch
milieuulongSAA=-20 ;
milieulatSAA=-11 ;
envergurelong=36 ;
envergurelat=9 ;
A=-5*%pi/180;

// 2e patch
milieulongSAA2=-55 ;
milieulatSAA2=-13 ;
envergurelong2=15 ;
envergurelat2=17 ;
B=0*%pi/180;
```
• During the orbit determination process, only β_i are estimated. The other parameters for the model are fixed.

• Stable in time for β_2 (relaxation)

• Small and long term variations for β_1 (drift when entering the SAA)
RESULTS ON RMS

Sentinel3A : Mean of the DORIS phase measurement RMS over ~40 cycles (cm)

Jason3 : Mean of the DORIS phase measurement RMS over ~40 cycles (cm)
RESULTS ON RMS

• OSTST 2016: «band-aid» solution for SAA impact on Jason3: estimation of a drift in frequency for each pass of stations inside the SAA area.

• Similar results, depends on station
INTRODUCTION

MODELLING

RESULTS ON RMS

RESULTS ON STATION POSITIONING

CONCLUSION
The model enables to overall improve the vertical positioning. But it does not improve it as much as the « band-aid » solution presented at OSTST 2016.

However, the model represents better the actual behaviour of the USO, rather than just estimating parabolic parameter on the clock, each pass, to minimise signatures.

RESULTS ON STATION POSITIONING (JASON3)
INTRODUCTION

MODELLING

RESULTS ON RMS

RESULTS ON STATION POSITIONING

CONCLUSION
The modelling of SAA frequency variations enables to improve DORIS phase measurement RMS for stations in the SAA for SentinelA3 and Jason3. It also improves station positioning for Jason3.

To do:
• Improve the SAA area definition on Jason3
• Apply the model on Jason 1