

CNES/CLS AC STATUS

Hugues Capdeville, Jean-Michel Lemoine, Adrien Mezerette CNES/CLS AC (GRG)

IDS AWG meeting, Toulouse 11 June 2018

CNES/CLS AC STATUS

- □ Status of the routine DORIS data processing
- We processed DORIS2.2 and RINEX data until end of Dec. 2017

New serie grgwd41

ITRF2014 configuration

List of new additions:

- Introduction of Jason-3 and Sentinel-3A (RINEX data) in the GRG DORIS processing
- Switch to the ITRF/DPOD2014
- DORIS-only orbits processing and evaluation by SLR processing
- Strategy to mitigate the SAA impact for Jason-2 and Jason-3 on the orbit (adjusting of frequency Polynomial on SAA station per pass) on the positioning (renaming of SAA stations)
- Remove the DORIS scale jump in 2012
 - use the new position of the HY-2A CoM given by the Chinese Project make our own pre-processing when using Doris2.2 data
- We provided GRG SINEX to IDS CC from July 2008 until end 2017
- We provided Sentinel3-A orbits to CPOD QWG since Sep. 2017

Processing strategy

(we took the IERS conventions and the IDS recommendations)

Software	GINS/DYNAMO
DORIS data	RINEX 3.0 phase measurement converted to DOPPLER
Station Coordinates	ITRF2014 (DPOD2014)
Gravity Field	EIGEN-GRGS.RL03-v2.MEAN-FIELD with mean slope extrapolation
DORIS Troposphere	VMF1 + one gradient per station in North & East directions
Attitude Model	for Jason-3: nominal law likeTopex for Sentinel-3A: nominal law like Envisat
Surfaces Forces & Estimated Parameters	Box-wing model for solar radiation,drag, Albedo and IR Macromodel available at : <i>ftp://ftp.ids-doris.org/pub/ids/satellites/DORISSatelliteModels.pdf</i> Radiation pressure scale coefficient : 1 coef/day but strongly constrained to: 0.99 for Jason-3 and 1.0 for Sentinel-3A OPR empiricals: 2 coeff cos-sin /orbital period in normal direction and 2 coeff cos-sin /orbital period in tangential direction (per arc) Drag coefficients adjusted: 1 coef/4 hours for Sentinel-3A and 1 coef/half day for Jason-3
Time span processing	From April 2016 to August 2017 3.5-day arcs with a cut-off angle of 12°

POD Summary DORIS RMS of fit and SLR external validation OPR Acceleration Amplitude:

Along-track and Cross-track / Radiation pressure coefficient

SATELLITE	DORIS RMS (mm/s)	SLR RMS (cm)	OPR amplitu (10 ⁻⁹ n	Solar radiation	
			Along-track	Cross-track	coefficient
Jason-3	0.35	1.8	1.3	2.6	0.99
Sentinel-3A	0.36	1.3	2.5	1.9	1.00

(from March 2016 to December 2017)

■ For the two directions, Along-track and Cross-track, the mean amplitudes are lower than 4x10⁻⁹ m/s², reflecting a satisfying level in the modeling of the satellite macromodels and the attitude law.

Comparison to CNES (GDR-E) / ESOC orbits Independent SLR RMS of fit

The SLR RMS residuals on Jason-3 and Sentinel-3A orbits are at a good level.
The level is comparable to the others orbits evaluated, CNES-GDR-E and ESOC.

□ Comparison to CNES (GDR) orbits Jason-3 orbit differences

There is a good agreement between the orbits calculated with GINS and ZOOM (GDR-E) but there is an along-track bias (~ 1.34 cm) which could be explained by the difference in time tagging.
For Jason-3, there is also a 60 days periodic signal in the radial component.

Comparison to CNES (GDR) / ESOC orbits Sentinel-3A orbit differences

For Sentinel-3A, the agreement is better but there is also an along-track bias (~ 6 mm).
The comparison to ESOC orbit gives better results except for crosstrack component with a bias of 1.1 cm.

Strategy to mitigate the SAA effect

- **Estimation of the beacon frequency Polynomial on SAA station per pass**
- Impact on the precise orbit

Classical processing: one Frequency Bias adjusted per pass.

With strategy: Frequency Polynomial (degree 4) adjusted per pass.

- The DORIS residuals are lower when we apply the strategy of polynomial adjusting frequency per pass for SAA stations.
- The impact is significant for SAA stations and the number of measurements is higher.

Strategy to mitigate the SAA effect

Strategy to add single satellite solution affected by the SAA in the multi-satellite solution

For Jason-1, the method we implemented, tested and adopted for ITRF2014 is: before combining Jason-1 solution to the other single satellite solutions, we rename the SAA stations (and all their adjusted parameters) so these SAA stations from Jason-1 do not contribute to the realization of the combined solution.

Multi-satellite Solution compared to DPOD2014

We computed weekly multi-satellite solutions from 2010 to August 2017 (8,5 years). We provided 3 solutions:

- Solution of reference REF: Envisat + Spot4 + Spot5 + Cryosat-2 + HY-2A + Saral + Sentinel-3A
- Solution 1: REF + Jason-2 + Jason-3
- Solution 2: REF + Jason-2 SMS + Jason-3 SMS

With SMS = SAA Mitigation Strategy: Renaming + (Polynomial adjusting)

Station	Solut North	ion 1 (in East	cm) Up	Solution 2 (in cm) North East Up		
Cachoeira	(0.9)	-0.2	2.2	0.3	0.2	0.7
Arequipa	-0.5	(1.1)	2.3	0.0	0.3	0.4
Kourou	-0.4	0.1	0.2	-0.2	0.06	0.04
Ascension	0.1	-0.5	2.0	0.1	-0.1	0.5
Saint Helene	(1.4)	-0.4	1.6	(0.5)	-0.2	0.4
Le Lamentin	-0.1	-0.3	-1.1	0.0	-0.1	-0.2
Libreville	(-1.0)	-0.3	1.1	0.02	-0.06	0.2
Yarragadee	0.1	-0.1	0.06	0.1	-0.1	0.07

- The IDS solution provided for the ITRF2014 was worsened by the Jason-2 solution for the SAA stations.
- The strategy brings an improvement in the station position estimation for the SAA stations, especially for the vertical component.

Correction of the DORIS scale factor jump in 2012

Correction of the HY-2A high scale

The high scale level of HY-2A increased the scale of the DORIS solution. When we used the new position of the CoM given by the Chinese Project, the HY2A scale is significantly reduced.

□ Scale variations due to the use of Doris2.2 data

Impact of using only the data considered to be good in CNES pre-processing: The increase of the scale factor for Jason-2 and Cryosat-2 was fully explained by the change of tropospheric model used by CNES in its POD processing (GDR standards): from CNET (GDR-C) to GPT/GMF (GRD-D).

The larger number of data, especially at low elevation, was the cause of the change we observe in the scale factor.

When we did our own pre-processing when using all doris2.2 data and the scale jump is removed

Sentinel-3A - GRG DORIS-only orbits

Comparison to QWG GPS-only orbits Results from GMV (J. Fernandez) Sentinel-3A orbit differences SLR evaluation of orbits

RMS of orbit differences (in cm) Reference orbit: CPOD

Sentinel-3A orbit comparisons per component (average of daily RMS; cm); CPOD vs external solutions

AIUB AING CNES COM B DLRR ESOC EUMM TUDF TUDG TUMM GRGG

Independent SLR RMS of fit

 The quality of Sentinel-3A DORIS-only is at the same level than GPS-only orbits, in particular in radial direction

PERSPECTIVES

- Geocenter and Scale factor from single satellite solutions (in progress)
- Using quaternions for the s/c body and solar array for Jason-2 and Jason-3 (spectral analysis)
- □ POD from GPS Sentinel-3A RINEX data
- □ Introduction of Sentinel-3B in the GRG processing chain
- Preparation to the next ITRF: implementation of models recommended by IERS as linear mean pole model FES2014, ...

