ITRF: seasonal station motions and geocenter motion

Zuheir Altamimi Xavier Collilieux Kristel Chanard Paul Rebischung Laurent Métivier IGN, France Email: zuheir.altamimi@ign.fr

Motivations

- Seasonal signals :
 - Evaluate and understand technique differences at colocation sites
 - Concentrate on annual & semi-annual signals
 - Combine them at co-location sites
 - Provide them in a coherent Reference Frame (CM or CF/CN)
 - Provide a coherent annual geocenter motion model compatible with ITRF2014
- Focus on DORIS results

Periodic signals: reference frame definition

- CM : Center of Mass Frame
- **CF : Center of Figure Frame**
- CN : Center of Network Frame

IERS Conventions:

$$\vec{X} = \vec{X}_{ITRF} - \vec{O}_G$$

is the vector from the ITRF origin to the instantaneous CM

Input data frame origin

Service/ Technique	Number of Solutions	Time span	# of sites	Theor. Origin
IGS/GNSS/GPS (Rebischung et al., 2016)	7714 daily	1994.0 – 2015.1 (21 yrs) Aligned (NNT, NNR) to IGS08	884	GPS CN
IVS/VLBI (Bachmann et al., 2016)	5328 daily	1980.0 – 2015.0 (35 yrs) Aligned (NNT, NNR) to a priori coord. frame (ITRF2008)	124	VLBI CN
ILRS/SLR (Luceri et al., 2015)	244 fortnightly 1147 weekly	1980.0 – 1993.0 1993.0 – 2015.0 (35 yrs)	96	СМ
IDS/DORIS (Moreaux et al., 2016)	1140 weekly	1993.0 – 2015.0 (22 yrs)	71	СМ

Using data from 2000.0 on

Periodic Signals : General Equations

Sine & Cosine Function $\Delta X_f = \sum_{i=1}^{n_f} a^i \cos(\omega_i t) + b^i \sin(\omega_i t)$

→ 6 parameters per station & per frequency: (a, b) following the three axis X, Y, Z. → With respect to a secular (ITRF) frame we can write:

$$X(t)_{s} - \delta X(t)_{PSD} = X(t_{0})_{itrf} + \dot{X}_{itrf} \cdot (t - t_{0}) + T(t) + \Delta X_{f}(t)$$

If:

- $X(t)_s$ is SLR time series, then T(t) reflects the geocenter motion as seen by SLR. Same for any satellite technique <u>in theory</u>
- $X(t)_s$ is any time series <u>pre-aligned to ITRF</u>, then T(t) is zero.

Combination of Seasonal Signals?

<u>Approach 1:</u> Stacking of all 4 technique time series

- Adding local ties at co-location sites
- Imposing co-motions at co-location sites
- Seasonal Signals can be expressed in CM or CF(CN)

<u>Approach 2</u>: Combine individual seasonal signals from the 4 techniques:

- Adding similarity transformation between techniques
- Imposing co-motions at co-location sites
- Seasonal Signals can be expressed in CM or CF(CN)
- More flexible to investigate technique agreement
- Variance factor estimation based only on seasonal signals agreement at co-location sites

Stacking of time series & rank deficiency

Need to specify the reference frames for both station positions & velocities and the periodic signals: CM or CN

- 14 DoF to define the secular frame
- 14 DoF for each frequency, handled by:
 - Minimum Constraints (MC) : No net periodic Translation, Rotation, or/and Scale of a reference set of stations
 - Internal Constraints (IC): Zero periodic signals in Translation, Scale & eventually Rotation time series
- Note:
 - MC applied wrt a network of stations ==> CN Frame
 - IC wrt time series of transformation parameters ==> CM Frame (True for SLR and DORIS CM)

Altamimi et al. IDS Analysis Working Group, Toulouse June 11, 2018

DE L'INFORMATION GÉOGRAPHIQUE

Frequencies Considered

- Annual and semi-annual
- First and 2nd draconitics for GPS:
 351.5 & 175.75 days
- Draconitics for DORIS:
 117.3 days for Topex and Jason

SLR Up annual signals : CM Frame

January

SLR Up annual signals : CN Frame

January

DORIS Up annual signals : CM Frame

January

DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÉRE

DORIS Up annual signals : CN Frame

January

GÉOGRAPHIQUE ET FORESTIÈRE

DORIS Annual Geocenter Motion

	Amp X (mm)	Phase X (deg)	Amp Y (mm)	Phase Y (deg)	Amp Z (mm)	Phase Z (deg)
CM: 3F *	0.0	240 7	0.4	22.1	1 1	100.0
	0.9	340.7	0.4	22.1	1.1	190.0
CM: 2F *	0.9	341.7	0.4	19.5	1.3	188.3

* Should be ~zero

SLR vs DORIS Annual Geocenter

	Amp X (mm)	Phase X (deg)	Amp Y (mm)	Phase Y (deg)	Amp Z (mm)	Phase Z (deg)
SLR CN: Uneven Network	2.1	63.7	3.1	329.1	3.1	22.7
SLR CN: 8 stations	1.7	60.7	3.6	325.0	2.2	28.7
SLR Via Multi- technique	1.1	55.7	3.7	356.8	2.3	51.1(*)
DORIS CN: 3F	2.3	167.5	3.0	312.1	2.3	343.1
DORIS CN: 2F	2.3	167.7	3.0	309.3	2.3	344.8
DORIS Via Multi- technique	2.9	163.1	3.6	303.6	1.4	335.2(*)

(*) Using data from 1993.0 on

DORIS: Diffs Up annual signals between CN DORIS and CN GNSS

Altamimi et al. IDS Analysis Working Group, Toulouse June 11, 2018

GÉOGRAPHIQUE

Up annual signals : GNSS CN 2 Frequencies estimated (Ann + Semi-Ann)

January GNSS Annual Signal 2F sigma < 0.1 mm 60 April₃₀. 0° -30 -60 5 mm/yr 180 240 180 120 60° 300 $Dh = A.cos(2\pi f(t - t_0) + \phi)$

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Up annual signals : GNSS CN 4 frequencies estimated (Ann, Semi-Ann + 2 draconitics) January

Diffs Up annual signals : GNSS CN 4 frequencies - 2 frequencies

Diffs Up annual signals : GNSS CN 4 frequencies - 2 frequencies

SLR: Diffs Up annual signals between CN SLR and CN GNSS

Altamimi et al. IDS Analysis Working Group, Toulouse June 11, 2018

GÉOGRAPHIQUE ET FORESTIÈRE

Estimated annual translations <u>Approach 1</u>: Multi technique stacking : in <u>CM SLR</u>

Component	Amp X (mm)	Phase X (deg)	Amp Y (mm)	Phase Y (deg)	Amp Z (mm)	Phase Z (deg)
SLR	* ~0	~0	~0	~0	~0	~0
GPS	1.45	48.0	3.25	335.1	2.00	47.7
VLBI	1.65	53.7	3.07	327.1	2.87	55.8
DORIS	** 3.30	1.2	2.43	49.6	2.01	104.7

****** Not expected: should be ~zero

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

SLR Annual Geocenter motion : different estimates

	Amp X (mm)	Phase X (deg)	Amp Y (mm)	Phase Y (deg)	Amp Z (mm)	Phase Z (deg)
SLR CN: Uneven Network	2.1	63.7	3.1	329.1	3.1	22.7
SLR CN: 8 stations	1.7	60.7	3.6	325.0	2.2	28.7
SLR Via Multi- technique	1.1	55.7	3.7	356.8	2.3	51.1(*)

Approach 2: Independent combination of seasonal signals

SLR (GPS draconitic estimated)	1.2	59.0	3.7	336.2	1.6	52,4
SLR (Multitech Re- weighted)	0.9	61.2	3.5	337.9	1.8	42.7
SLR (Multitech Re- weighted GPS draconitic estimated)	0.9	59.6	3.6	337.9	1.8	40.2

DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Approach 2: Combination of individual technique signals Level of agreement at co-location sites

Conclusion

- DORIS Geocenter Motion is not reliable, except maybe in the Y component
- GNSS draconitic signals must be estimated
- Amplitude variations of Annual Geocenter motion from SLR (in mm):
 - $Gx \qquad 0.9 2.2 \qquad (\delta = \pm 1.3)$
 - $Gy \qquad 3.0 3.8 \qquad (\delta = \pm 0.8)$
 - $Gz \qquad 1.6 3.0 \qquad (\delta = \pm 1.4)$
- Level of agreement at co-location sites still to be carefully investigated

