#### DISCUSSION FOR THE MEAN POLE IDS 2017

1

F. Mercier and A. Couhert



IDS 23/05/2017

## IERS STANDARDS, POLE AND MEAN POLE

Objective :

response of the earth to the accelerations due to pole changes

<u>Stations positions :</u>

low frequency : postglacial rebound part (linear motion) included in the ITRF still correct hypothesis ?

response to annual/chandler frequency band, how to compute it correctly?

Earth gravity field : effects on J2 orientation (C21,S21)

low frequency part : 'mean pole' geometric transformation annual/Chandler frequency band



# **OBSERVED POLAR MOTION**

#### Main frequency content

- annual ( ~ 365.25 days)
- Chandler (~ 435 days )
- low frequency assumed linear motion up to ~1990 pluriannual content observed on the complete interval



How to estimate the earth response to the complete excitation defined as a function of time ?

Remark : the low frequency part of the response may depend on past effects, not known

## **DYNAMIC SYSTEM TRANSFER FUNCTION**



Transformed, for a prograde (clockwise) motion for xe,ye (  $\begin{array}{cc} \dot{x_e} \leftrightarrow \omega y_e \\ \dot{y_e} \leftrightarrow -\omega x_e \end{array}$  )

 $x_s = x_e - 0.0115y_e$  The formula is valid only in the annual frequency band  $y_s = y_e + 0.0115x_e$  and for prograde xe,ye

# **XPDOT AND YP**



High frequency content due to xpdot estimation method (finite differences)

Low frequency content is from yp (comparison with the complete yp signal)

## **XPDOT AND YP**



High frequency content due to xpdot estimation (finite differences)

xpdot can be efficiently estimated using yp information at annual frequency (same property for ypdot and -xp)

#### **IERS STANDARDS FORMULAS**

The formula can be used only in the annual/Chandler frequency band :

in this case, using functions  $\hat{x_e}, \hat{y_e}$  containing all the low frequency content of each signal xe, ye we have :

$$x_s = (x_e - \hat{x_e}) - 0.0115(y_e - \hat{y_e}) y_s = (y_e - \hat{y_e}) + 0.0115(x_e - \hat{x_e})$$

# $\hat{x_e}, \hat{y_e}$ contain <u>all</u> the contribution outside the frequency band of interest

in the external potential, which is equivalent to changes in the geopotential coefficients  $C_{21}$  and  $S_{21}$ . Using for  $k_2$  the value 0.3077 + 0.0036 i appropriate to the polar tide yields

$$\Delta \bar{C}_{21} = -1.333 \times 10^{-9} (m_1 + 0.0115m_2),$$
  
$$\Delta \bar{S}_{21} = -1.333 \times 10^{-9} (m_2 - 0.0115m_1),$$

where  $m_1$  and  $m_2$  are in seconds of arc.

(IERS standards 2010)

m1 and m2 should contain only information in the annual/Chandler frequency band

$$(m_1 = x_p - \bar{x}_p, \quad m_2 = -(y_p - \bar{y}_p))$$

## **IERS STANDARDS FORMULAS**

#### Same remark holds for the stations coordinates :

 $S_r = -33\sin 2\theta \left(m_1\cos\lambda + m_2\sin\lambda\right)$  inmm,

 $S_{\theta} = -9\cos 2\theta \left(m_1\cos\lambda + m_2\sin\lambda\right)$  inmm,

 $S_{\lambda} = 9\cos\theta \left(m_1\sin\lambda - m_2\cos\lambda\right)$  inmm,

(IERS standards 2010)

The 'mean pole' to be used in m1 and m2 in these formulas is a filtering correction not a geophysical model mean pole

#### Remark : from Wahr 2015, comparison with standards 2010

$$k_2^r = 0.3077$$

$$k_2^i = 0.0036$$

$$a_e = 6378136.6 \text{ m}$$

 $g_e = 9.7803278 \text{ ms}^{-2}$ 

 $\Omega \quad = \ 2\pi \ 1.002737811911/86400$ 

$$C_{21} = -\frac{a_e \Omega^2}{g_e \sqrt{15}} (k_2^r m_1 + k_2^i m_2)$$
  
= -1.336 10<sup>-9</sup> (m\_1 + 0.0117m\_2)

$$S_{21} = -\frac{a_e \Omega^2}{g_e \sqrt{15}} (k_2^r m_2 - k_2^i m_1) = -1.336 \ 10^{-9} (m_2 - 0.0117m_1)$$

Small diffrences 0.0117 and 0.0115 (standards) 1.336 and 1.333 (standards)



8

# SIGNAL CHARACTERISTICS OUTSIDE THE ANNUAL BAND



Moving average, 5 Chandler periods : good extraction of the frequency band Some pluriannual variations



#### PRECISION OF THE ESTIMATED LOW FREQUENCY SIGNAL



All filtering methods are convenient for a millimetric performance The remaining frequencies participating below the annual/Chandler signals have negligible effects Using a linear function as filtering reference with produce several millimeters errors

## CONCLUSION

#### Annual/Chandler perturbations

m1 and m2 for annual/Chandler formulas in the standards must be computed using a filtered mean pole value for full precision

Filtering with a moving average is sufficient for station positioning

 submillimetric precision for station positioning at annual/Chandler
 linear reference can produce several millimeters errors
 at least, the current standards approach must be used

#### Low frequency perturbations

there are pluriannual terms with 0.02, 0.04 arcsec variations

- the response of the earth system at these frequencies is not detailed (use of a 'static' transformation, as in the standards ?)
- are such variations observable in the stations coordinates time series?
- for the earth potential, the use of a variable gravity field removes the problem (but consistent conventions for the mean pole shall be used)