

Brief POD Status on Jason-3 and Sentinel-3A

Alexandre Couhert, Flavien Mercier, Sabine Houry, Eva Jalabert, John Moyard

Centre National d'Etudes Spatiales (CNES)

Two New DORIS Missions

- Jason-3 (launched on January 17, 2016)
 DORIS-only MOE since January 19, 2016
- Sentinel-3A (launched on February 16, 2016)
 DORIS-only MOE since February 21, 2016
- For both missions, MOEs (DORIS-only) and POEs (DORIS+GPS) are GDR-E reduced-dynamic solutions
- POEs are routinely delivered to the IDS community

Jason-3

Jason-3 Satellite

- Same as Jason-2 except for the DORIS antenna position
- Macromodel
 - Based on project team inputs (spacecraft body part), also used on Jason-2 (good performances)
 - GDR-E in-flight calibrated (Jason-2) solar array SRP model
 - Available at<u>ftp://ftp.ids-</u> doris.org/pub/ids/satellites/DORISSatelliteModels.pdf

DORIS Receiver Performance

Ionosphere-free Doppler residuals

Jason-2: Final RMS residuals: ~0.42 mm/s

Jason-3: Final RMS residuals: ~0.45-0.46 mm/s

DORIS Receiver Performance

RMS residual differences per station between Jason-3 and Jason-2

RMS differences with positive sign indicate higher RMS values for Jason-3

MOE Orbits

Comparisons between CNES and JPL GPS-based MOEs w.r.t. CNES DORIS-only MOE

Radial RMS differences: 1: 1.8cm/0.8cm, 2: 1.3cm/0.9cm, 3: 1.1cm/1.0cm

Along-track mean differences: 1: 2.4cm/1.0cm, 2: 3.2cm/1.0cm, 3: 2.0cm/1.2cm

MOE Orbits

Independent SLR RMS residuals for daily MOE arcs (DORIS-only, GPS-based, JPL orbits)

POE Orbits

Independent SLR RMS residuals for POE arcs (DORIS+GPS

POE Orbits

Independent SLR RMS residuals for POE arcs (DORIS+GPS orbits) over 5°elevation bin, similar performances with GSFC DORIS+SLR orbits (high elevations)

Time-Tagging Performance

DIODE–POE time-tagging differences for J3 CY000 (J2 CY280) and J3 CY001 (J2 CY281)

Empirical Accelerations

Amplitude of 30-minute along-track accelerations

Sentinel-3A

Configuration

The frequency reference for the GNSS receiver is externally provided by the Doris USO

Allows USO monitoring by GNSS for the altimetry

SRP model

Construction of a pre-launch model using the documentation 6 elements box and solar array wing (black MLI, some radiator surfaces on +Y,-Y,-Z)

Photos are available to verify the surfaces and configurations

GNSS antennas

Figure 3-3 : Sentinel-3 in flight configuration and satellite reference axes

-Zs and Ys surfaces

Empirical 1/rev analysis (NTC red. dyn.)

Also there is an important adjusted bias in the normal direction for the GNS center of phase ~2.5 cm -- > 2.5 10-8 ms-2, ten times the observed 1/rev periodic terms ...

The SRP model is OK (available at IDS), normalization coefficient 1.0

Comparisons STC - NTC

Daily mean and sigma values Both STC orbits are close to the NTC in radial (Doris ~8 mm, GPS ~6 mm)

Other orbits, radial comparison with NTC CNES

Same bias solutions : ESOC, CPOD difference 5-6 mm rms Biased solutions (radial empirical accelerations ?) : DLR,AIUB,TUDF 4-6 mm sigma 6-8 mm (means ~9-11 mm rms)

Other orbits, tangential comparison with NTC CNES

Systematic mean effect between CNES and all other solutions (5 mm) (phase map, Doris measurements contribution ?)

Other orbits, normal comparison with NTC CNES

Different positive biases between CNES, CPOD and the other solutions transverse position of PCO? Important sigma variations for esoc and CPOD

SLR residuals, Core Network, all elevations

Core network, all elevations

Stations used : L7090 L7105 L7810 L7839 L7840 L7941

Yarragadee, Greenbelt, Zimmerwald, Graz, Herstmonceux, Matera

SLR residuals, Core Network, high elevations

Core network, high elevations

Core network, elevation > 70 degrees ----> estimation of the radial performance

very few data : the estimation is not very reliable rms $\sim 1.5~\text{cm}$ for NTC

All solutions have a radial performance around 1.5 cm, NTC is slightly better

Horizontal results (cm)

STC GPS :

NTC: very stable 1.5 (the SLR location in X_sat is consistent with GPS and Doris)

2.2 (why is it so different from NTC ? to be investigated)

STC Doris : 2.7 (low cross track observability with Doris)

Conclusions

- Very good performances for the two DORIS receivers
- For SAA effects, the USO pre-irradiation works correctly for orbit determination needs. However, there are visible effects on Jason 3 and Sentinel 3, which may degrade some positioning performances.
- The monitoring of S3 USO by the GNSS will help to understand the on board frequency variations at intermediate time scales (100s – 1000 s).

Back-up

Standards for Precise orbits models (1)

	From proposed GDR-E lason 2
Gravity	EIGEN-GRGS_RL03_MEAN-FIELD (or its updated version)
model	Non-tidal TVG : annual, semi-annual, one bias and one drift for each year up to deg/ord 80; C21/S21 modelled according to IERS2010 conventions;
	Solid Earth Tides: from IERS2003 conventions
	Ocean tides FES2012 (FES2014 if available)
	Atmospheric gravity : 6hr NCEP pressure fields + tides from Biancale-Bode model
	Pole Tide: solid Earth and ocean from IERS2010 conventions
	Third bodies: Sun, Moon, Venus, Mars and Jupiter
Surface	Radiation Pressure model: thermo-optical coefficient from pre-launch box and wing model
forces	Earth Radiation : Knocke-Ries albedo and IR satellite model
	Atmospheric density model : MSIS-86
Estimated	Drag coefficient every 2 revolutions
dynamical parameters	Along-track and Cross-track 1/rev per day or every 12 hours (GPS solutions)
	Stochastic solutions
Satellite	Mass and Center of gravity: Post-Launch values + variations
reference	Attitude Model : Quaternions and Solar Panel orientation.
,	

Standards for Precise orbits models (2)

Displacement	Earth tides: IERS2003 conventions
of reference points	Ocean Loading: FES2012 (FES2014 if available)
	Pole tide : solid earth pole tides and ocean pole tides (Desai, 2002)
	S1-S2 atmospheric pressure loading (Ray & Ponte, 2003)
	Geocenter variations: Tidal : ocean loading and S1-S2 atmospheric pressure loading Non-tidal : Seasonal model from J. Ries
	Reference GPS constellation: JPL solution at IGS (orbits and clocks)
Terrestrial Reference Frame	Extended ITRF2008 (SLRF/ITRF2008, DPOD2008, IGS08)
Earth orientation	Consistent with IERS2010 conventions and ITRF2008
Propagations	SLR Troposphere correction: Mendes-Pavlis
delays	DORIS Troposphere correction : GPT/GMF model
	DORIS antenna phase center correction
	GPS PCO/PCV consistent with constellation orbits and clocks (IGS08 Antex)
Estimated	DORIS: 1 Frequency bias per pass, 1 troposphere zenith bias per pass
measurement parameters	SLR : bias per arc solved for a few stations, bias per pass for a few stations
-	GPS: Floating ambiguity per pass, receiver clock adjusted per epoch