

CNES/CLS AC STATUS

Hugues Capdeville, Jean-Michel Lemoine, Laurent Soudarin, Adrien Mezerette CNES/CLS AC (GRG)

IDS AWG meeting, Greenbelt 15-16 October 2015

IDS AWG 10/2015

Processing context

•We analyzed DORIS2.2 data with 3.5-day arcs and a cut-off angle of 12° ITRF2014 configuration From January 2015 to June 2015 Satellites: SPOT5, JASON-2, CRYOSAT2, HY-2A, SARAL

DORIS data processing results

DORIS and SLR RMS of fit of the orbit determination

OPR Acceleration Amplitude: Along-track and Cross-track / Radiation pressure coefficient

SATELLITE	RMS DORIS / SLR (mm/s) / (cm)	OPR amplitude average (10 ⁻⁹ m/s ²)		Solar radiation
		Along-track	Cross-track	coefficient
SPOT-5	0.35	2.6	1.5	1.05
JASON-2	0.32 / 1.1	2.6	1.6	0.97
CRYOSAT-2	0.35 / 1.2	3.3	2.4	1.0
HY-2A	0.34 / 1.3	0.5	1.7	0.86
SARAL	0.35 / 1.2	1.6	1.4	1.0

Positioning results by single satellite solution

• SPOT-5 Single satellite Solution compared to ITRF2014P computed by CATREF

Positioning results by single satellite solution

JASON-2 Single satellite Solution compared to ITRF2014P computed by CATREF

Positioning results by single satellite solution

HY-2A Single satellite Solution compared to ITRF2014P computed by CATREF

Positioning results by single satellite solution

SARAL Single satellite Solution compared to ITRF2014P computed by CATREF

Helmert parameters:

- scale and Geocenter
- number of stations in SINEX file
- number of stations used for CATREF processing
- WRMS of fit obtained by least-square adjustment of CATREF

The scale is around 12 mm

IDS AWG 10/2015

Positioning results by single satellite solution

CRYOSAT2 Single satellite Solution compared to ITRF2014P computed by CATREF

Processing context

We analyzed DORIS2.2 data with 3.5-day arcs and a cut-off angle of 12°

We use the ITRF2014 configuration From January 2014 to June 2015 -with nominal attitude law -with attitude quaternion from E. Schrama (including the 6°pitch in GINS software)

DORIS data processing results

Orbit results

- DORIS and SLR RMS of fit of the orbit determination
- Comparison of the orbit obtained from the two sets

•Positioning results: Single satellite solution compared to ITRF2014P computed by CATREF Helmert parameters: Scale and Geocenter, WRMS

CRYOSAT2 DORIS data processing

Orbit results

- DORIS and SLR RMS of fit of the orbit determination
- Orbit differences RMS3D

Attitude	RMS DORIS / SLR (mm/s) / (cm)	OPR amplitude average (10 ⁻⁹ m/s ²)		Orbit differences
		Along-track	Cross-track	RMS3D
Nominal	0.352 / 1.25	3.2	2.4	< 1mm
Quaternion	0.356 / 1.26	3.3	2.3	

Positioning results by single satellite solution

CRYOSAT2 Single satellite Solution compared to ITRF2014P computed by CATREF

Helmert	Single Cryosat-2			
parameters	Nominal	Quaternion		
TX (mm)	-6.1 ± 6.4	-6.5 ± 6.3		
TY (mm)	-1.9 ± 6.6	-2.2 ± 6.5		
TZ (mm)	-2.0 ± 22.4	-3.2 ± 21.2		
Scale (mm)	11.6 ± 3.3	12.4 ± 3.6		
WRMS (mm)	21.9	22.0		

Backup

Positioning results by single satellite solution

CRYOSAT2 Single satellite Solution compared to ITRF2014P computed by CATREF

Helmert parameters:

- scale and Geocenter
- number of stations in SINEX file
- number of stations used for CATREF processing
- WRMS of fit obtained by least-square adjustment of CATREF

in blue with nominal attiude and in red with quaternions attitude

