CNES/GRGS gravity field solutions from GRACE: RL03-v2

J.-M. Lemoine ${ }^{(1)}$, S. Bourgogne (2), S. Bruinsma ${ }^{(1)}$, P. Gégout ${ }^{(3)}$, R. Biancale ${ }^{(1)}$
(1) CNES/GRGS, Toulouse, France
(2) Géode \& Cie, Toulouse, France
(3) GET/UMR5563/OMP/GRGS, Toulouse, France

* CNES/GRGS gravity fields from GRACE: RL03-v2
> Data processing
$>$ Inversion strategy for monthly models
> Mean gravity field model generation
$>$ Extrapolation for orbit processing
> Model quality
> Model upgrading strategy

Data processing

GRACE (L-1B "Version2" data)

. K-Band Range-Rate data ($\sigma_{\text {apriori }}=.1 \mu \mathrm{~m}$)

- Accelerometer / attitude / thrusters data
- GPS data (1-day arcs, $\sigma_{\text {code }}=.8 \mathrm{~m}, \sigma_{\text {phase }}=\mathbf{2 0} \mathbf{~ m m} / \mathbf{3 0 s}$ resolution)
 (actually: $\sigma_{2002-2003}=8 \mathrm{~mm} / 30 \mathrm{~s}, \sigma_{2003-2013}=20 \mathrm{~mm} / 300 \mathrm{~s}, \sigma_{2013-2015}=8 \mathrm{~mm} / 30 \mathrm{~s}$)

SLR

- Lageos1/2 data (10-day arcs, $\sigma_{\text {apriori }}=6 \mathrm{~mm}$)
. Starlette/Stella data (5-day arcs, $\sigma_{\text {apriori }}=10 \mathrm{~mm}$)

Physical parameters present in the normal equations

- Gravity spherical harmonic coefficients complete to degree and order 175 (truncated to 30 for LAGEOS and 40 for GPS data)
. Ocean tides s. h. coefficients for 14 tidal waves with maximum degree/order ≤ 30

Dynamical models

Gravity	EIGEN-GRGS.RL02 \rightarrow EIGEN-6S2
Ocean tide	FES2004 (degree 80) \rightarrow FES2012 (Legos)
Atmosphere	3-D ECMWF pressure grids / 6hrs \rightarrow ERA-interim / 3hrs
Ocean mass model	MOG2D (non-IB) / 6hrs \rightarrow TUGO (Legos) / 3hrs
Atmospheric tides	\rightarrow Not necessary any more
3rd body	Sun, Moon, 6 planets (DE405)
Solid Earth tides	IERS Conventions 2010
Pole tides	IERS Conventions 2010
Non gravitational	Accelerometer data (+biases and scale factors)

Geometrical models

SLR stations	ITRF2008 coordinates \rightarrow updated
GPS	IGS orbits and CODE clock \rightarrow IGS Repro-1 orbits and clocks

Other models

Hydrology
Glacial Isostatic Adjustment
Taken into account by the a priori gravity field

Inversion technique used for RL03 : truncated Singular Value Decomposition (SVD)
$>$ It is more efficient to solve well chosen linear combinations of coefficients (by truncated SVD) than to solve indistinctly the coefficients (by Cholesky decomposition).
$>$ Demonstration with a normal matrix up to d/o 80:

1) Solving for the first 2601 components of the canonical basis (i.e. spherical harmonic coefficients up to degree/order 50)
2) Solving for the first 2601 components of the basis made by the eigenvectors of the normal matrix

1) Cholesky decomposition

2) Truncated SVD
 Equivalent Water Heights comparison

$2+1+2$

.

Reference uncertainty (q sum $=0.87 \mathrm{~cm}$)

[^0]Equivalent Water Heights comparison
SVD solution: minimisation in the direction of the 2601 most significant eigenvectors
$\min -206.01 \mathrm{~cm} / \max 58.90 \mathrm{~cm} /$ weighted rms $10.72 \mathrm{~cm} /$ oceans 6.60 cm

$$
\underline{0}
$$

Reference: Mean field

$$
\text { Degree } 2 \text { to } 80
$$ Degree 2 to 80

Equivalent Water Heights comparison
SVD solution: minimisation in the direction of the 2601 most significant eigenvectors

促
In

* Trying to solve the problems at the poles
$>$ Since SVD does not solve sectorial coefficients due to a lack of information, we need to introduce decent a-priori sectorial coefficients before using SVD
$>$ So we tried to establish a 2-step inversion in RLO3-v2
$>$ First step: Cholesky inversion with constraints to obtain good sectorial coefficients
$>$ Second step: Truncated SVD inversion starting with the first step solution

Results
$>$ The 2-step inversion improves the solutions mainly at the poles

RL03-v1

$\min -198.94 \mathrm{~cm} / \max 62.61 \mathrm{~cm} /$ weighted rms $10.41 \mathrm{~cm} /$ oceans 6.21 cm

RLO3-v2

$\min -206.60 \mathrm{~cm} / \max 55.46 \mathrm{~cm} /$ weighted rms $10.18 \mathrm{~cm} /$ oceans 5.66 cm

Mean Models generated from time series

$>$ Fitting each series of monthly coefficients by a set of 6 parameters
> Used for operational computation (i.e. altimetric orbit processing) or TRF processing (i.e. ITRF2014)
$>$ In order to better match with GRACE observations, gravity field models have become more complex. They contain now :
> Yearly bias and slope : piecewise linear function except in case of ...
> Jumps caused by big earthquakes (3 so far : Sumatra, Concepcion and Tohoku)
$>$ Annual and semi-annual sine/cosine functions (with continuity constraints at hinge epochs)
... it means 600000 coefficients for a 80×80 s. h. model

Normalized S $(10,01)$ coefficient

Normalized S $(10,01)$ coefficient

Normalized S $(10,01)$ coefficient

http://grgs.obs-mip.fr/grace/varia
GRACE / LAGEOS

GRGS Time Variable Models from GRACE / LAGEOS
GRACE > GRGS Time Variable Models from GRACE / LAGEOS > Mean fields

GRG S TIME VARIABLE
MODEL S FROM GRACE -
ILAGEOS
Presentation
Introduction to GRACE solutions
GRACE solutions release 01
GRACE solutions release 02
GRACE solutions release 03
Formats
Mean fields
Interactive Tools
GFZ / GRG S EIGEN MEAN MODELS

GRGS ecnes

Introduction
Mean gravity field models
The links below give access to the models. For a description of how the models are built, go to the tabs "Release 01", "Release $02^{\prime \prime}$ or "Release $03^{\prime \prime}$.

Associated with Release 03:
, EIGEN-GRGS.RLO3.MEAN-FIELD (based on 28 years of LAGEOS data, 10 years of GRACE data and 3 years of GOCE data)
, Reference field_for_RL03-v1_grids: The geoid and EWH grids and images are computed by difference of the RL03-v1 solutions to a static reference mean field, which is an arbitrary reference. In the case of the RL03-v1 grids and images, we have used Reference field_for_RL03-v1_grids. This static mean field is close to the actual value of the Earth's gravity field at the date 20080
> EIGEN-GRGS.RL03-v2.MEAN-FIELD (based on 28 years of LAGEOS data, 12 years of GRACE data and 3 years of GOCE data)
, EIGEN-GRGS.RL03-v2.MEAN-FIELD.mean_slope_extrapolation (identical to EIGEN-GRGS.RL03-v2.MEAN-FIELD, except that the null slope on extrapolation is replaced by the average slope of the signal over the period 2003.0-2014.0)

Associated with Release 02:
, EIGEN-GRGS.RL02.MEAN-FIELD (based on 4.5 years of data)
, EIGEN-GRGS.RLO2bis.MEAN-FIELD (update based on 8 years of data)
, EIGEN-6S2 (proposal for ITRF2013 standards)
, EIGEN-6S2.extended (this field is no longer available, there was an error in the TVG part for the years 2012-2013. It is replaced by EIGEN-6S2.extended.v2)
, EIGEN-6S2.extended.v2 (same as EIGEN-6S2, except that the TVG part has been extended to end of 2013 for the needs of the ITRF2013 computation)

Associated with Release 01:
, EIGEN_GL04S
, EIGEN_GL04S_ANNUAL
, EIGEN_GLO4C

FIRST EIGEN_03series.v2.PWL_PER_ANN.mean_slope.dg_300
CMMNT from GRACE-LAGEOS monthly gravity fields RL03-v2 (August 2002 to July 2014) + LAGEOS-1/2 (1985-2003) + GOCE-DIR5 (1 > 80)
CMMNT Extrapolation $=$ mean slopes over 2003.0-2014.0
EARTH $0.3986004415 \mathrm{E}+150.6378136460 \mathrm{E}+07$
SHM $\quad 300 \quad 3002.00$ fully normalized exclusive permanent tide
G_BIAS $20-.484165442874 \mathrm{E}-030.000000000000 \mathrm{E}+001.3920 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000019850109 .1751$ ynyn
GDRIFT $200.000000000000 \mathrm{E}+000.000000000000 \mathrm{E}+00 \quad 0.0000 \mathrm{E}+000.0000 \mathrm{E}+0019500101.000019850109 .1751 \mathrm{nnnn}$
G_BIAS $20-.484165442874 \mathrm{E}-030.000000000000 \mathrm{E}+001.3920 \mathrm{E}-110.0000 \mathrm{E}+0019850109.175119860101 .0000$ ynyn
GDRIFT $200.124657017393 \mathrm{E}-100.000000000000 \mathrm{E}+00 \quad 2.2600 \mathrm{E}-11 \quad 0.0000 \mathrm{E}+0019850109.175119860101 .0000$ ynyn
GCOS1A $200.387007395388 \mathrm{E}-100.000000000000 \mathrm{E}+000.1117 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020030101 .0000$ ynyn
GSIN1A $200.591814852349 \mathrm{E}-100.000000000000 \mathrm{E}+000.1101 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020030101 .0000$ ynyn
GCOS2A $200.393538776211 \mathrm{E}-100.000000000000 \mathrm{E}+000.1107 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020030101 .0000$ ynyn
GSIN2A $20-.219462790927 \mathrm{E}-100.000000000000 \mathrm{E}+000.1104 \mathrm{E}-110.0000 \mathrm{E}+0019500101.000020030101 .0000$ ynyn

		$0-$	$0.000000000000 \mathrm{E}+00$	0.2330E-10	$0.0000 \mathrm{E}+00$	20030101.0000
GDRIFT		$0-.492366971847 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.3806E-10	0.0000E+00	20030101.0000
GCOS1A		$0.384911295545 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.1096E-10	0.0000E+00	20030101.0000
GSIN1A		$0.722385315628 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.1354 E	0.0000	20030101.0000
GCOS2A		$00.766906872209 \mathrm{E}-11$	$0.000000000000 \mathrm{E}+00$	0.8906E-11	$0.0000 \mathrm{E}+00$	20030101.0000
GSIN2A		$0-.313633906172 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	$0.1522 \mathrm{E}-10$	0.0000	20030101.000
G_BIAS	2	,	0.		$0.0000 \mathrm{E}+00$	
GDRIFT	2	.772123828542E-10	$0.000000000000 \mathrm{E}+00$	0.2719E-10	0.0000E+00	20040101.0000
GCOS1A	2	$00.446978163033 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.4782 E	0.0000E+00	20040101.000
GSIN1A	2	$0.331550095538 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.9492 E	0.0000E+00	20040101.0000
GCOS2A	2	$00.103868129375 \mathrm{E}-11$	$0.000000000000 \mathrm{E}+00$	0.4411	0.0000E+00	20040101.0000
GSIN2A	2	$0-.159947020906 \mathrm{E}-10$	0.000000000000E+00	0.6033 E	. $0000 \mathrm{E}+00$	20040101.0000
G_BIAS	2	$0-.484165332544 \mathrm{E}-03$	$0.000000000000 \mathrm{E}+00$	0.1854E-09	. $0000 \mathrm{E}+$	20140615.0917
GDRIFT	2	$0-.147311624901 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	$0.4825 \mathrm{E}-11$	$0.0000 \mathrm{E}+00$	20140615.0917
GCOS1A	2	$00.332262028125 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.2667E-11	0.0000E+00	20140615.0917
GSIN1A	2	$00.480638590637 \mathrm{E}-10$	$0.000000000000 \mathrm{E}+00$	0.2981E-11	0.0000E+00	20140615.0917
GCOS2A	2	$00.466711549833 \mathrm{E}-11$	0.000000000000E+00	0.2692E-1	0.0000E+00	20140615.0917
GSIN2A	2	-. $174442524168 \mathrm{E}-10$. $000000000000 \mathrm{E}+00$. $2777 \mathrm{E}-$.0000E+	20140615.091

20040101.0000 ynyn

20040101.0000 ynyn
20040101.0000 ynyn 20040101.0000 ynyn 20040101.0000 ynyn
20041226.0060 ynyn 20041226.0060 ynyn 20041226.0060 ynyn 20041226.0060 ynyn 20041226.0060 ynyn
20500101.0000 ynyn 20500101.0000 ynyn 20500101.0000 ynyn 20500101.0000 ynyn 20500101.0000 ynyn

J2 monthly variations are extended from 1986 till now
$>$ From LAGEOS, Starlette and Stella data
$>$ Need to be consistent with the 18.6 yrs ocean tide model 055.565 (Om1) : $\bar{C}_{20}{ }^{+}=0.5406 \mathrm{~cm}, \varepsilon_{20}{ }^{+}=270 \mathrm{deg}$.
www.thegraceplotter.com
GRACE satellite gravity data

* Extrapolated coefficients

$>$ Mean drift, mean annual and semi-annual periodic terms from the first (backward) and last (forward) determined biases
$>$ Before 1986 for 2-degree terms determined from Lageos data
$>$ Before August 2002 for all other terms up to degree/order 80
$>$ After April 2015 until presently for all terms

* The new RL03-v2 model reduces the geographically correlated radial orbit drift rate, from more than $1 \mathrm{~mm} / \mathrm{yr}$ (for the RLO2bis mean model) to less than $0.6 \mathrm{~mm} /$ y over ~ 7 years, with respect to Jason-2 GDR-E reduced-dynamic orbits (from GPS+DORIS).

Jason-2 SLR residuals :
> RL02: 1.36 cm rms

Radial orbit drift rate Scale: - $1 /+1 \mathrm{~mm} / \mathrm{yr}$ [A. Couhert \& al., 2015]
$>$ RL03-v2: 1.29 cm rms

Next RLO3-v3 model

$>$ Improving the inversion process (Cholesky + SVD in a 2-step procedure)
> Adapting the relative weights (between GPS and KBR)
> Using more satellite data (Starlette, Stella, Jason)
$>$ Increasing the temporal resolution (back to 10-days?)
$>$ Using improved dealiasing models such as ocean tides (FES2014)

Mean models could be updated each year :

$>$ RL03-v3 should be ready for the end of the year
$>$ The mean RLO2-v3 model will contain extrapolated terms from mid-2015
$>$ The completion (with adjusted terms) from 2015 till mid2016 can be expected for end 2016
$>$ Updated mean models could be delivered annually at the end of year

[^0]:

