

Doris ground antennas Radio Frequency characterization Status

Cédric Tourain, Albert Auriol

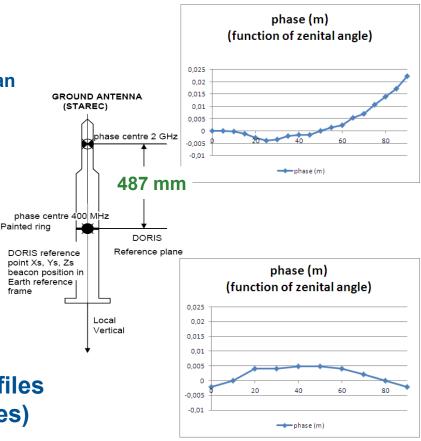
2014 March 27

- Reminder : Starec antenna characterization provided
- Analysis of dispersion w.r.t. azimuth angle
- CATR measurement error estimation
- DORIS ground antenna error budget

JUTLINE

Reminder

Characterization provided for DORIS STAREC ground antennas

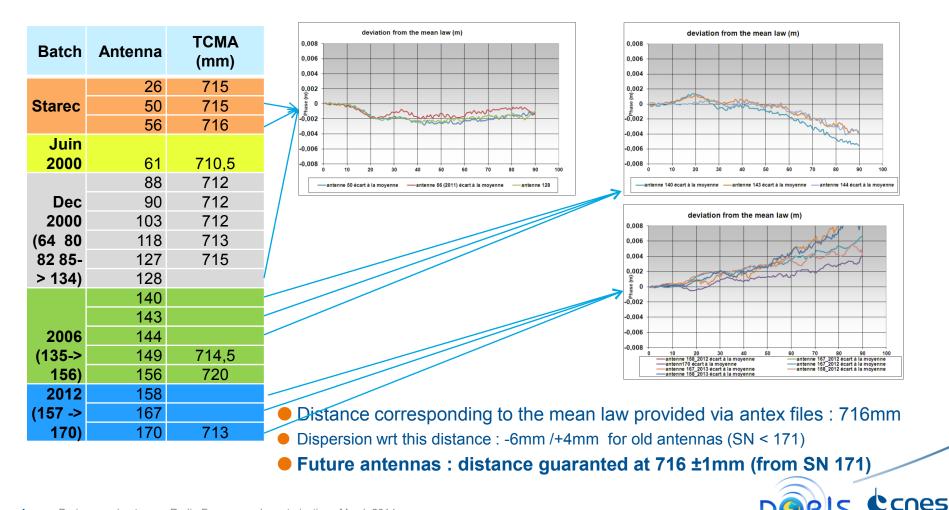

◆2GHz :

- » Phase center : 487 mm above the reference plan
- » 2Ghz Phase law :

+400 MHz : no change

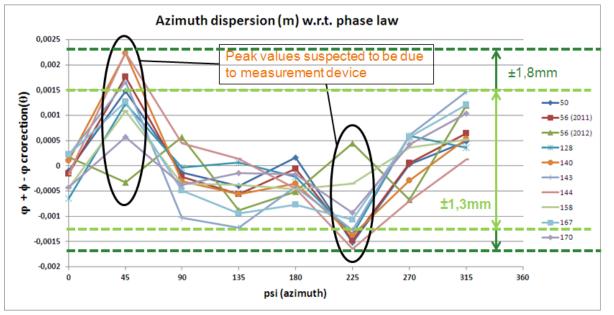
- » Phase center: 0 mm above the reference plan
- » 400Mhz Phase law

Characterizations provided via antex files (proper use described in specific slides)



Antenna dispersion

Antennas characterized at CNES compact antenna test range (CATR) In parallel, a set of antennas dismantled


+Distance between 2GHz radiating element bottom and mounting flange (TCMA)

Analysis of dispersion w.r.t. azimuth angle first analysis (2/2)

- Usual analysis performed by the CATR Compact Antenna T Room
 - 9 antennas analyzed
 - » 4 plans (4 azimuth angle): $\phi = 0^{\circ}$, 45°, 90°, 135°; with θ going from -180 to 180°
 - » 8 samples of azimuth measurements
- We get an estimation of the dispersion (θ averaged) :

- We observe an azimuthal dispersion of
 - +±1,8mm including peak values

Analysis of dispersion w.r.t. azimuth angle Second analysis (1/2)

Specific analysis performed at CATR

- + 3 antennas analyzed :
 - » 4 plans (4 zenithal angle): θ = 0°, 30°, 60°, 90°; with φ going from -180 to 180°
- + To eliminate inter-antennas variability
 - » we determine the mean dispersion over all antennas
- + mean azimuthal dispersion for 4 zenithal angles
- + the mean over θ angle is ± 1,8mm
 - \Rightarrow Consistent with first analysis


Impact of dispersion :

- » Law θ values :
 - impact on the up component
 - small dispersion => small impact on up
- » High θ values :

impact on the N/E component
greater dispersion (±3,7mm at 85°)
=> greater impact
for standard passes we can estimate a max impact of ±3mm

This dispersion includes:

- » True Azimuthal RF dispersion
- » Perpendicularity / Coaxiality defaults of Antenna axis w.r.t. Mounting flange
- » Centering default of radiating elements
- » CATR eventual default, rotation axis perpendicularity

θ	Max dispersion
0°	0 mm
30°	±1,4mm
60°	±2,15mm
85° (interpolation)	±3,7mm
90°	±4 mm

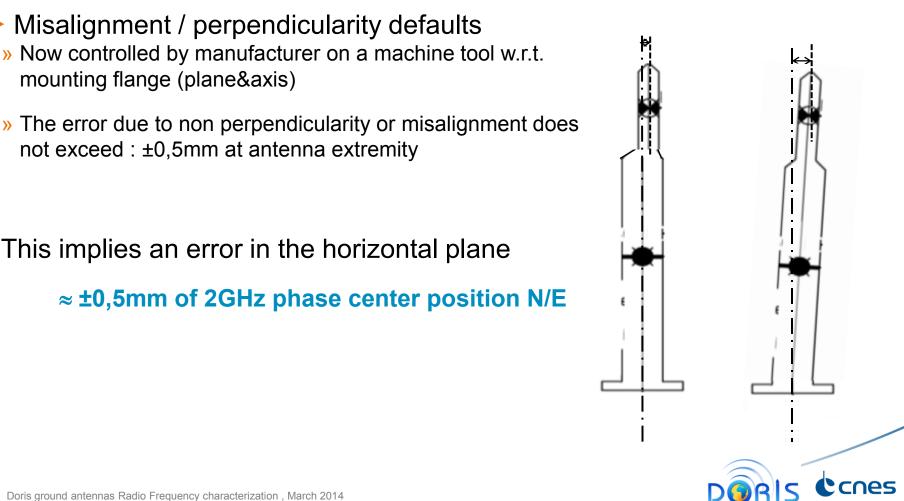
SERVICE ALTIMETRIE

DECISE

mounting flange (plane&axis)

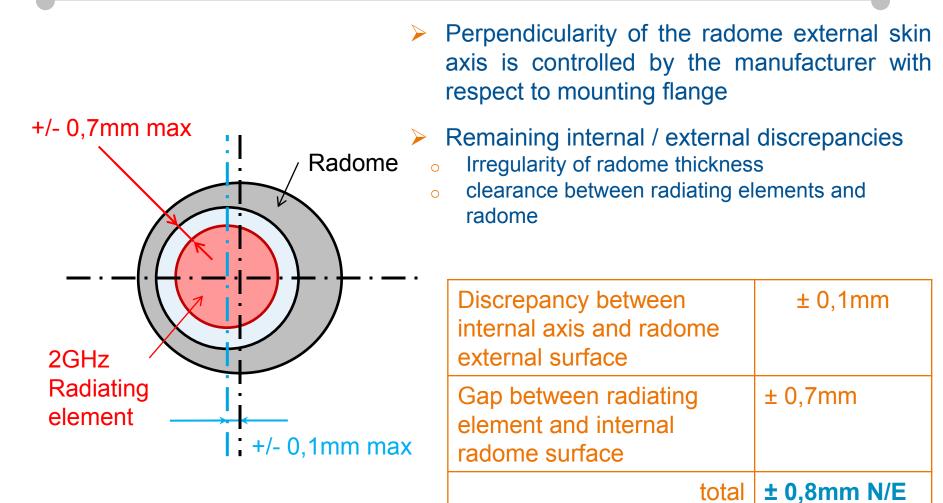
Misalignment / perpendicularity defaults

not exceed : ±0,5mm at antenna extremity


=> This implies an error in the horizontal plane

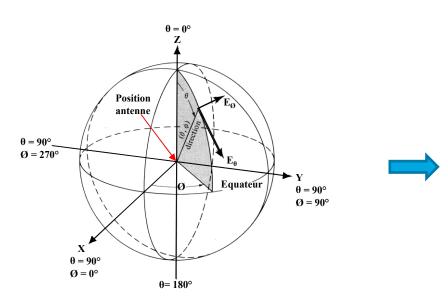
 $\approx \pm 0,5$ mm of 2GHz phase center position N/E

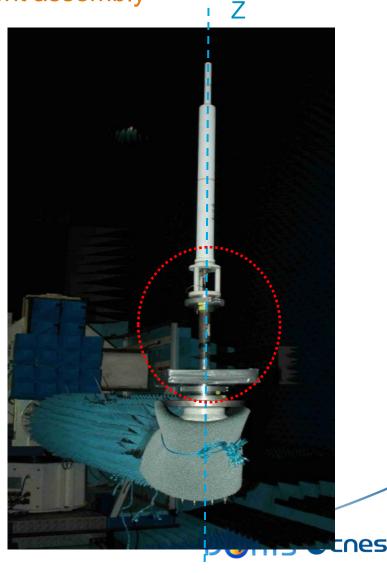
» Now controlled by manufacturer on a machine tool w.r.t.


Antenna axis eventual defaults

misalignment perpendicularity

Centering default of 2GHz radiating elements




DORIS CONES

Antenna perpendicularity default in CATR

Perpendicularity default due to measurement assembly

- Antenna aligned on Z axis of measurement device
- Antenna is set on measurement device thank to mechanic interface
 - » Perpendicularity is not totally perfect
 - » Default assumed : ± 1 mm at 2GHz height (887mm)

Analysis of dispersion w.r.t. azimuth angle Conclusion

The two analysis performed lead to the same result :
 A maximum azimuthal dispersion of ±1,8mm (theta averaged)

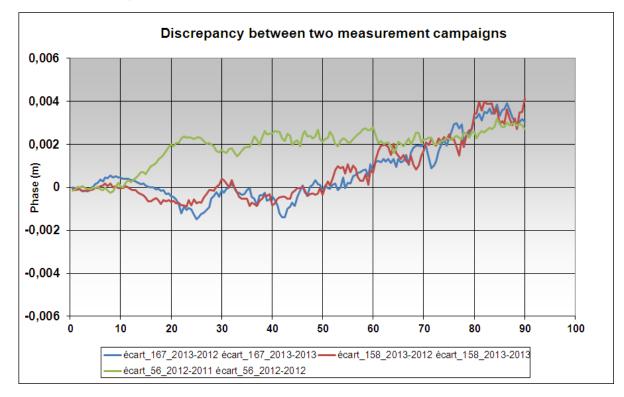
- The worst impact of azimuthal dispersion would be ±3mm in horizontal plane (N/E), assuming the dispersion is totally due to antenna
 But ±1mm is probably due to CATR measurement assembly
- This allows to establish the following azimuth error budget

Antenna Azimuth error budget			
Error source	N/E impact		
Total observed	±3 mm		
CATR assembly	±1 mm		
=> Total antenna	±2 mm		
Perpendicularity	±0,5 mm		
Centering	±0,8 mm		
=> Azimuth phase pattern variation	±0,7 mm		

SERVICE

• We assume the DORIS STAREC antenna is non azimuth dependent

Not really a surprise, STAREC antenna is helicoidal, it has a revolution symmetry by conception



CATR measurement error

The CATR has it own measurement error

- To get an estimation of this error
 - Some antennas characterized twice at CATR at 3 different epochs
 - Measurement discrepancy observed : 4mm max

⇒ We assume a CATR measurement noise error of ±2mm (up)

DORIS Ground antenna error budget

Error source	up	plan (N/E)
Antennas variability (2GHz phase center position) before consolidation with manufacturer (SN < 171)	+4/-6 mm	
Antennas variability (2GHz phase center position) after consolidation with the manufacturer (From SN 171)	±1 mm	
Antenna characterization error (BCMA)	±2 mm	
Azimuthal dispersion (including RF, perpendicularity, centering)	0mm	± 2mm
Total antenna alone		
SN < 171	+6/-8 mm max 5,4 mm rms	± 2 mm max 0,7 mm rms
From SN 171	± 3 mm max 1 mm rms	± 2 mm max 0,7 mm rms
Antenna environment impact	TBD	TBD

Antenna alone is now well characterized

• Future work :

Environment impact

Satellite antenna Characterization

THANK YOU

Backup slides

BASE COMPACTE DE MESURES D'ANTENNES

Simuler la distance satellite sol

Positionner l'antenne dans l'espace

Objectifs : Connaître et maîtriser le rayonnement des antennes seules et sur structures

Isoler l'antenne dans l'espace

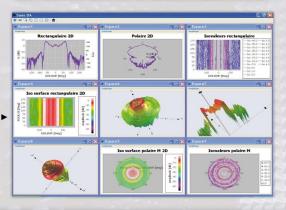
Absorbants : -70 dB de réflectivité typique à 8 GHz.

> Positionneur : 7 degrés ► de liberté en rotation et translation. Capacité : 350 Kg maximum.

 Diagramme de rayonnement, directivité, gain, localisation centre de phase, temps de propagation de groupe.
 Performances système, surface équivalente radar.

Réflecteur parabolique : 5,3 m x 5,6 m, 48 tonnes. - Focale : 13 m.

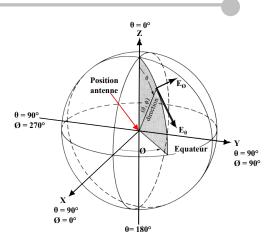
 Etat de surface : 25 µm RMS,
 Zone tranquille maximale de 4 m x 4 m x 4 m.


Instrumentation : analyseurs de réseau Agilent et ABmillimètre, logiciels CNES/ SILICOM d'acquisition et post-traitement.

Simuler la liaison bord sol

15 sources primaires ► de 0,4 à 200 GHz.

Réaliser les mesures avec précision

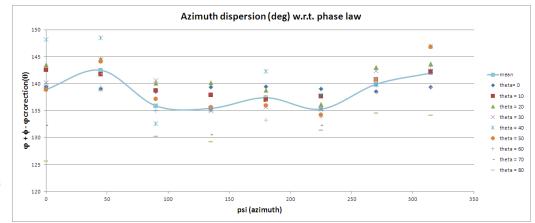


Analysis of dispersion w.r.t. azimuth angle first analysis (1/2)

- 9 antennas analyzed
- Usual analysis performed by the CNES antenna department give : Measurements for :

4 plans (4 azimuth angle): $\phi = 0^{\circ}$, 45°, 90°, 135° with θ going from -180 to 180°

- + We can get 8 samples of azimuth measurements:
 - φ = 0°; 0<θ< 90
 </p>
 - φ = 45°; 0<θ< 90
 - φ = 90°; 0<θ< 90
 - φ = 135°; 0<θ< 90
- $\phi = 0^{\circ}; 0 > \theta > -90 => \phi = 180^{\circ}; 0 < \theta < 90$ $\phi = 45^{\circ}; 0 > \theta > -90 => \phi = 225^{\circ}; 0 < \theta < 90$ $\phi = 90^{\circ}; 0 > \theta > -90 => \phi = 270^{\circ}; 0 < \theta < 90$
- $\phi = 90^{\circ}; 0 > \theta > 90^{\circ} = > \phi = 270^{\circ}; 0 < \theta < 90^{\circ}$
- φ = 135°; 0>θ>- 90 => φ = 315°; 0<θ< 90
 </p>



For each antenna, we calculate :

- » For a given couple (ϕ ; θ) :
- » φ φ φ correction (θ)
 - With : $\boldsymbol{\phi}$: phase measurement

 $\phi \text{correction} \left(\theta \right)$: phase law correction

- » To eliminate dispersion in θ
- » we determinate the mean value over θ
- => We obtain a azimuthal dispersion for each antenna

