Cryosat-2 precision orbit determination validation activity

E.J.O. Schrama, TU Delft IDS Analysis Working Group Paris 26-27 March 2014

Precision Orbit Determination

- For our 6-day arcs we have:
 - ~50 beacons from the IDS, 10s doppler data
 - ~10 stations from the ILRS
- Inspect internal quality:
 - Evaluate DORIS + SLR tracking residuals
 - Inspect the dynamic parameters that we solve for
 - Compare to external trajectories from the CNES
- New options where we solve for:
 - IDS coordinates, keep SLR fixed
 - Helmert parameters between different solutions

Models, tools etc

- GEODYN software from NASA GSFC plus own tools.
- Station coordinates and Earth rotation parameters:
 - DORIS and SLR station coordinates in DPOD2008/SLRF2008
 - IERS standards implemented
- Dynamics
 - EIGEN5c gravity model
 - Temporal gravity from GRACE to degree and order 20
 - FES2004 ocean load tides
- Spacecraft specific models
 - Panel model, antenna offsets, LRA offsets, provided by ESA
 - Satellite attitude reconstructed from star camera quaternions
 - <u>ftp://dutlru2.lr.tudelft.nl/pub/ejo/cryosat2/quaternion/</u>

Graz

26-mar-2014 to 27-mar-2014

24h intervals

Forcing Parameters vs beta angle

Actions:

- There is work to do here
- Adjust emissivity of panels
- No UCL solution worked yet

Tidal aliasing

- The periodicity of the β angle is 485 days (or 243 days from node to node)
- If we assume that the orbital period of week 5-dec-2013 is maintained in a 443 day 'repeat' then:

Tide	Aliasing (days)
M_2	2612
S ₂	2481
O ₁	3343
K ₁	1465

POE orbit

IDS beacon coordinates

- Allow beacon coordinates to 'freely' adjust while we keep the ILRS stations fixed in SLRF2008
- This procedure results in a new orbit solution which van be compared to the DPOD2008/SLRF2008 solution we had computed earlier
- Inspect the Helmert parameters between both trajectories.
- Initially developed as a screening tool, it is an option in the current processing scheme

Helmert transformations

- Translations: the only significant effect goes along the z-axis, signal: 10 mm
- Rotations: both trajectory solutions are compatible at the 1 ppb level, trend signal at 1 ppb/3.5 year, or 2.8e-10 radians/year
- Scale: no significant differences are noted
- 3d rms after fit: around 7 mm.
- MSL error = -0.16 * dz according to Morel and Willis (2005), the reference frame effect on the MSL is therefore 1e-9/3.5*0.16 = 0.3 mm/yr

Conclusions

- Cryosat-2 is unique in the sense that it does not carry a GPS tracking receiver, all tracking by DORIS and SLR
- SLR:
 - Fall back option, independently it yields ≈4 cm orbits radially
 - SLR fits consistent at the ≈1.5 cm level
 - Low weight relative to DORIS
 - Allows us to check the reference frame effect
- POD scheme differs from the CNES
 - CNES: rinex data, Ours: 10s Doppler counts
 - MOE and POE orbits are compared to ours
 - Radial consistency at the 1.5 to 2.0 cm level
- The real time DIODE Navigator data has been improved, since the summer of 2012 we see a radial consistency below the 5 cm level
- Reference frame: IDS to ILRS seems to be consistent at the 1e-9 level for rotations and 10 mm for dz, MSL effect estimated at 0.3 mm/yr

Backup slides

navigator

MOE orbit

Drag parameters:

- scale factor
- MSIS86 model
- satellite properties
- 3 hourly estimates

KP3 index

- proxy par.

