GSC Analysis Center Report GSFC POD Team

 IDS Analysis Working Group Meeting Paris, FRANCE March 26-27, 2014
Summary

1. Since October 2013, All DORIS data (1993-2013) reprocessed with a series of updates to gscwd20.
2. The new series (gscwd23) includes implementation of recommendations from the AWG meeting Toulouse (April 2013), implementation of the IERS 2010 standards; Application of the DORIS antennae phase laws; Application of a GSFC-derived model of time-variable gravity (1993-2013) on a week-by-week basis..,
3. New baseline series: gscwd23. Supercedes all previous series. Delivered to CDDIS and IGN data centers on Sept. 30, 2013. (See DORISReport 3536; Jan. 16, 2014).
4. gscwd24. A series to augment gscwd23: Includes Jason-1 data (Nov. 2004 - July 2008); HY2A data (Nov 2011 - Dec 2013).

Significant Changes wrt. ITRF2008

1. Explicit modeling of the pole according to the IERS standards 2010, (Petit and Luzum, 2010; Table 7.7, pp. 115.)

- Cubic model to 2010; Linear model afterwards.

2. C21, S21 is fully compatible with this pole model and uses long-term model based on standard values of C20, C22, S22. (equation 6.5 IERS standards 2010, pp. 81).

Significant Changes wrt. ITRF2008

3. New a priori DORIS station set (DPOD2008v1.12). Brings in data from newer stations towards the end of the series.
4. Explicitly deleted in POD computations those stations with < 250 observations/week. (In gscwd18, these stations were deleted at the normal equation stage).
5. A DORIS timing bias model was added for TOPEX/Poseidon, based on SLR/DORIS solutions.
6. Use quaternions from E.J.O. Schrama to model attitude of Cryosat-2.

Significant Changes wrt. ITRF2008

7. More frequent cd adjustments as per recommendations of Laurent Soudarin; This affected the lower satellites: SPOT-2,3,4,5; Envisat, Cryosat-2.
8. "Newly ascertained" Pitch changes in Solar array of SPOT-5 (after March 2012).
9. Many (beaucoup) week-by-week arc setup cleanups to avoid lengthy periods with no data in beginning, end or middle of arcs.

Significant Changes wrt. ITRF2008

10. In weekly normal equations, satellite contributions had the following NEQ scale factors:

TOPEX	9.68980
SPOT-2	11.5398
SPOT-3	10.2811
SPOT-4	11.8906
SPOT-5	13.5913
ENVISAT	9.99860
CRYOSAT2	12.7550
JASON-2	17.6356

These scale factors are wrt. the GEODYN POD data weight of 2 mm / s, and as a result the effective data weight in the weekly solutions is closer to the intrinsic RMS of fit, by satellite, allowing for some residual systematic error.
\rightarrow This should be noticeable in the std deviations in the STCD plots for this series.

Significant Changes wrt. ITRF2008

11. Use SPOT-5 SAA Corrected DORIS data (2006-2013.0). (Data for 2013/SPOT-5 not yet processed; waiting for data).

GSC wd23 Processing Summary

Satellite	Narcs	avg obs/arc	avg/arcl	avg WRMS
			(days)	(mm/s)
SPOT-2	968	24854	5.93	0.4755
SPOT-3	165	26128	5.77	0.5000
TOPEX	668	36596	6.37	0.5163
SPOT-4	923	28824	5.92	0.4728
SPOT-5	663	52955	6.34	0.4067
Envisat	557	39353	5.22	0.4912
Jason-1	188	74954	6.63	0.3239
Jason-2	294	112070	6.59	0.3767
Cryosat2	236	50860	5.46	0.4105
HY2A	137	56990	5.41	0.3880

GSC wd23 Radiation Pressure Models

Satellite	Model Applied \& Source
SPOT-2	GSFC-derived macromodel. Retuned.
SPOT-3	GSFC-derived macromodel. Retuned.
TOPEX	Marshall \& Luthcke, 1994; Marshall et al., 1995; Antreasian and Rosborough 1992.
SPOT-4	CNES-derived. Tuned for ITRF2008. Le Bail et al. 2010
SPOT-5	CNES-derived. Tuned for ITRF2008. Le Bail et al. 2010 Change in pitch of solar array modelled explicitly after 2008. Envisat
UCL. Sibthorpe, 2006.	
Jason-1	UCL. Cr=1.00. Ziebart et al. 2005.
Cryosat2	CNES-derived. Cr=0.945.
HY2A	CNES, 7plate macromodel. Untuned.

Test	Nplate s	UCL model applied	Along-track OPR Ampl$\left(1 \times 10^{-9} \mathrm{~m} / \mathrm{s}^{2}\right)$		Cross-track OPR Amplitude$\left(1 \times 10^{-9} \mathrm{~m} / \mathrm{s}^{2}\right)$		Cr
Satellite			Avg.	Median	Avg	Median	
A priori (from itrf2008)	10	Y	10.29	9.98	2.573	2.204	1.00
mod (UCL itrf2008)	10	Y	1.517	1.418	1.980	1.661	1.00
mod_noucl	10	N	0.897	0.847	2.160	1.859	1.00
Ucltst1*	10	Y	1.096	1.032	1.946	1.629	1.00
Ucltst1_cr*	10	Y	1.076	1.007	1.945	1.622	1.00417
cnesmod	8	Y	1.571	1.475	1.958	1.633	1.00
cnesmod_noucl	8	N	1.337	1.265	2.119	1.796	1.00

Conclusions: (1) 10 -plate macromodel (includes SAR-array) slightly lower opr 'residuals' than 8-plate (CNES) model; (2) UCL-model improves after application of correction in surface area for thermal re-radiation of solar array.

GSC wd23 Empirical OPR Summary

 (over time span of data)| Satellite | Along-track (nm/s**2) | | Cross track (nm/s**2) | |
| :--- | :--- | :--- | :--- | :--- |
| | Mean | Median | Mean | Median |
| SPOT-2 | 1.94 | 1.91 | 3.45 | 2.99 |
| SPOT-3 | 0.72 | 0.66 | 2.31 | 2.03 |
| TOPEX | 0.77 | 0.54 | 4.31 | 3.63 |
| SPOT-4 | 1.12 | 0.80 | 3.65 | 4.24 |
| SPOT-5 | 1.20 | 0.66 | 1.48 | 1.32 |
| Envisat | 1.49 | 1.34 | 1.87 | 1.55 |
| Jason-1 | 1.53 | 1.28 | 2.37 | 2.70 |
| Jason-2 | 1.37 | 1.22 | 3.03 | 2.96 |
| Cryosat2 | 3.07 | 2.47 | 3.21 | 2.13 |
| HY2A | 4.53 | 2.70 | 4.11 | 2.34 |

HY-2A gscwd23 OPR History

```
- Along-track Hy2a
- Cross-track Hy2aA
```


Cryosat2 gscwd23 OPR History

$\begin{array}{ll}\text { Along-track C2 } \\ \text { : } & \text { Cross-track C2 }\end{array}$

SPOT-5 gscwd23 OPR History

: Along-track S5

Envisat gscwd23 OPR History

$\begin{array}{ll}\text { : } & \text { Along-trac } \\ \text { Cross-track }\end{array}$

Envisat Acceleration Amplitudes

Scale of new solution, wd23 vs wd20

WRMS of wd23 vs wd20.

Tx for wd23 \& wd20

Next steps

1. Review any anomalies detected by Combination Center.
2. Check macromodel implemented for HY-2A.
