

Single-satellite Analysis Campaigns Tests on ALCATEL/STAREC antennas G. Moreaux, F. Lemoine, L. Soudarin, and all ACs

- Page 2
- Evaluation wrt ITRF2008 of SINGLE-satellites solutions OVER 1995 Spot-2, Spot-3, TOPEX-POSEIDON
- Evaluation wrt ITRF2008 of SINGLE-satellites solutions OVER 2011-2012 Envisat, Spot-4-5, Cryosat-2, Jason-2, HY-2A
- SIMPLE TEST on ALCATEL and STAREC ANTENNAS

EVALUATION WRT ITRF2008 OF SINGLE-SATELLITES SOLUTIONS OVER 1995 SPOT-2, SPOT-3, TOPEX-POSEIDON

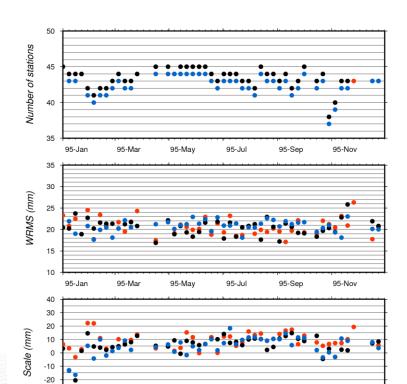
IDS AWG - Toulouse - April 4-5 2013

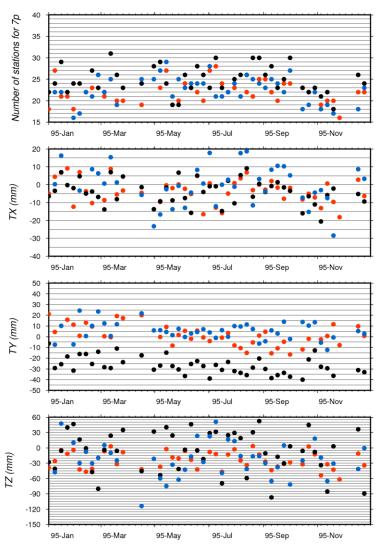
-30 -40

95-Jan

95-Mar

Page 4


GSC,

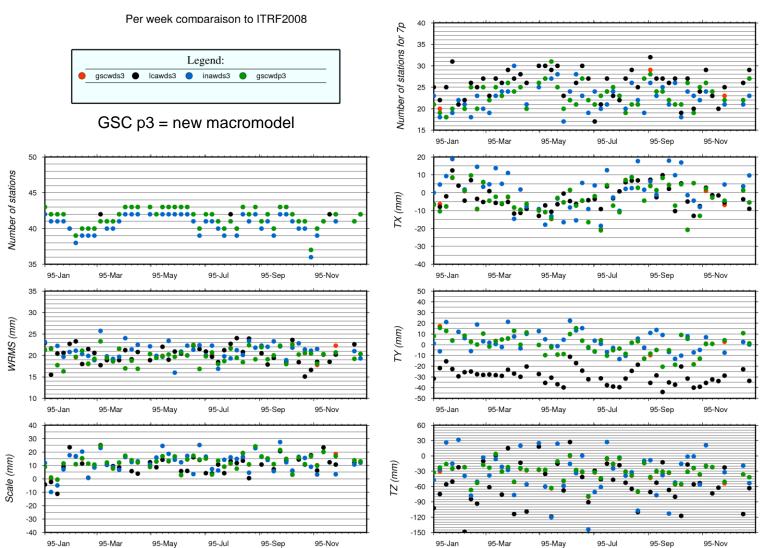

INA

LCA

Per week comparaison to ITRF2008

IDS AWG – Toulouse – April 4-5 2013

95-May


95-Jul

95-Sep

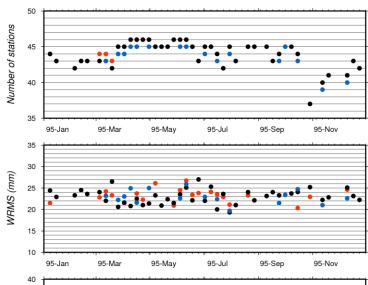
95-Nov

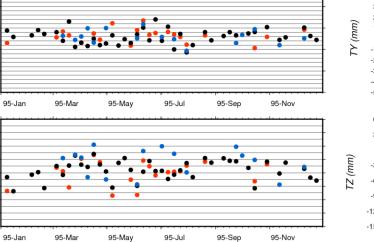
Spot-3 - 1995

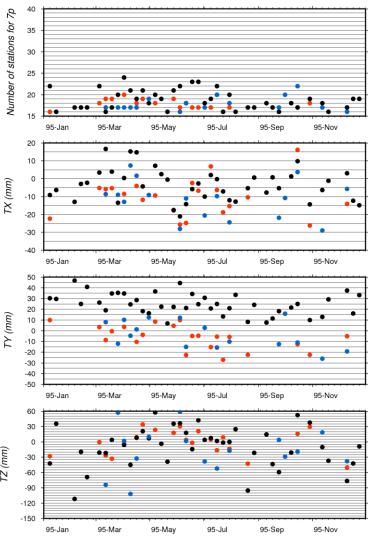
Page 5

GSC,

INA


LCA




TOPEX/POSEIDON - 1995

Per week comparaison to ITRF2008

Page 6

IDS AWG - Toulouse - April 4-5 2013

30

20

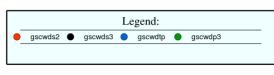
10

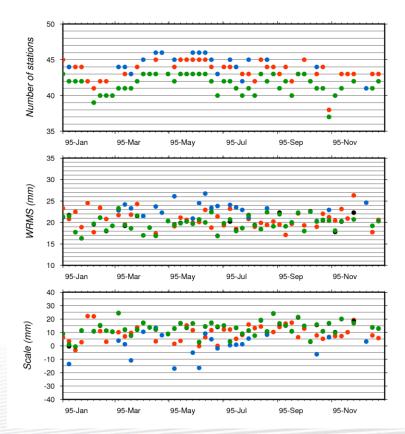
0

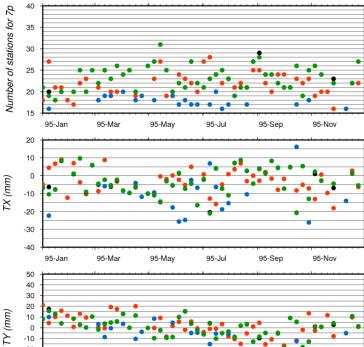
-10

-20

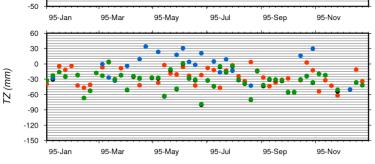
-30 -40


Scale (mm)

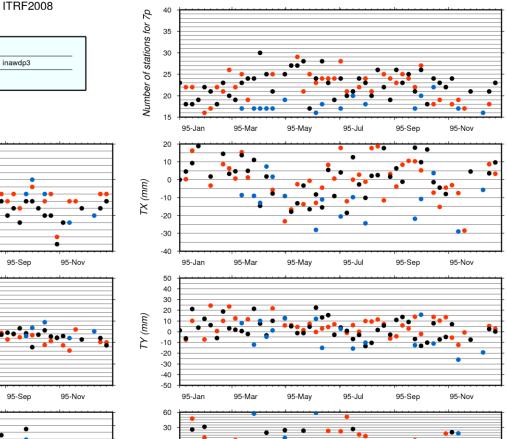

GSC - 1995

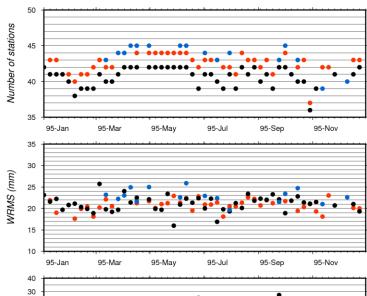


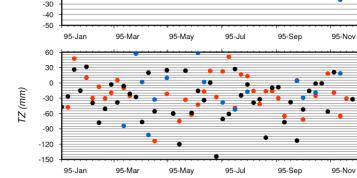
Per week comparaison to ITRF2008



GSC p3 = new macromodel for Spot-3






INA - 1995

Per week comparaison to ITRF2008

Page 8

ê

IDS AWG - Toulouse - April 4-5 2013

20

10

0

-10

-20

-30

-40

95-Jan

95-Mar

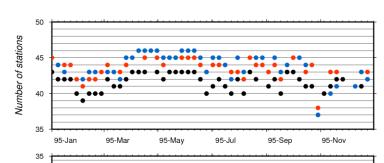
95-May

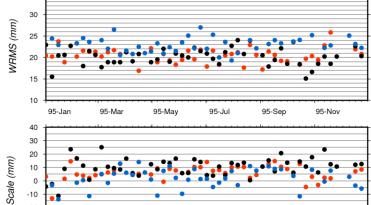
95-Jul

95-Sep

95-Nov

Scale (mm)




LCA - 1995

Page 9

Per week comparaison to ITRF2008

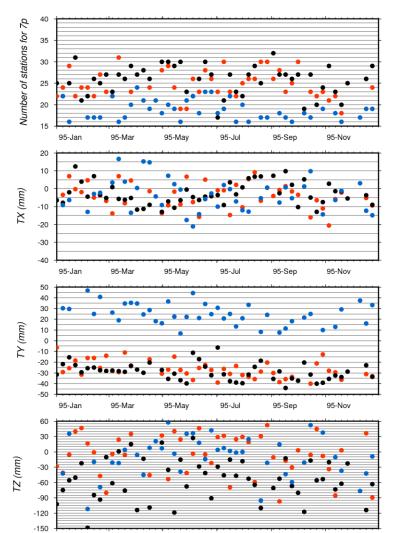
95-May

95-Jul

95-Sep

95-Nov

95-Jan


95-Mar

95-May

95-Jul

95-Sep

95-Nov

-20

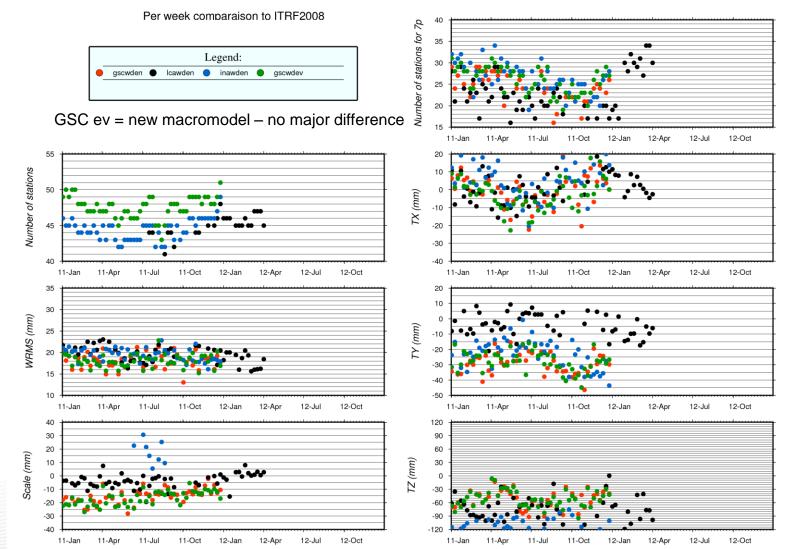
-30 -40

95-Jan

95-Mar

- Mission order by number of stations:
 - TOPEX/POSEIDON
 - Spot-2
 - Spot-3
- 3 missions are similar (excepted on Ty for LCA).
- GSC has more homogeneous Helmert parameters for all the missions
- INA and LCA show Tz with higher variations

AC	#serie	erie #weeks wrms[mm]		sca	ale[mm]	T	<[mm]	1	Гу[mm]	Tz[mm]		
			mean	std	mean	std	mean	std	mean	std	mean	std
qsc	s2	45	20.584	2.047	9.060	5.787	-3.527	6.812	1.713	9.702	-25.180	17.516
ina	s2	42	20.743	1.339	5.047	6.798	0.881	12.127	5.307	8.056	-20.200	37.744
lca	s2	46	20.448	1.746	5.611	6.608	-4.326	7.286	-27.204	8.164	-7.270	41.007
gsc	s3	48	19.821	1.682	12.521	5.441	-3.217	7.703	0.050	9.040	-32.921	17.881
gsc	p3	48	19.796	1.630	12.689	5.366	-3.167	7.780	0.083	8.951	-32.208	17.833
ina	s3	47	21.083	1.770	12.146	7.443	2.789	11.547	2.849	9.127	-33.287	40.505
lca	all <mark>s3</mark> ep	49	20.235	2.043	10.084	7.014	-2.710	6.251	-29.169	7.795	-55.465	40.018
gsc	ong tp	21	23.210	1.611	0.234	20118.792	-10.381	10.490	-6.310	11.118	-1.000	267 24.630
ina	tp	16	22.913	1.621	7.991	txt 10.144	-11.762	10.823	-4.019	13.047	-16.413	43.611
lca	tp	42	22.998	1.704	txt 2.201	7.089	-3.981	9.027	25.198	10.095	-7.360	40.947



EVALUATION WRT ITRF2008 OF SINGLE-SATELLITES SOLUTIONS OVER 2011-2012 ENVISAT, SPOT-4-5, CRYOSAT-2, JASON-2, HY-2A

IDS AWG - Toulouse - April 4-5 2013

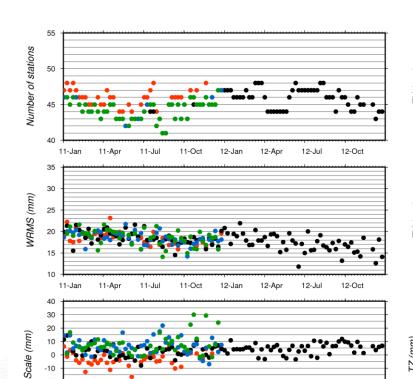
Envisat - 2011/2012

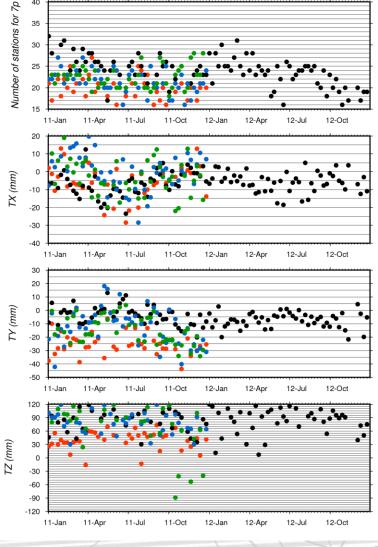
LCA

GSC,

INA

Spot-4 - 2011/2012


40


35

Page 13

Per week comparaison to ITRF2008

IDS AWG - Toulouse - April 4-5 2013

0

-10

-20

-30

-40

11-Jan

11-Apr

11-Jul

11-Oct

12-Jan

12-Apr

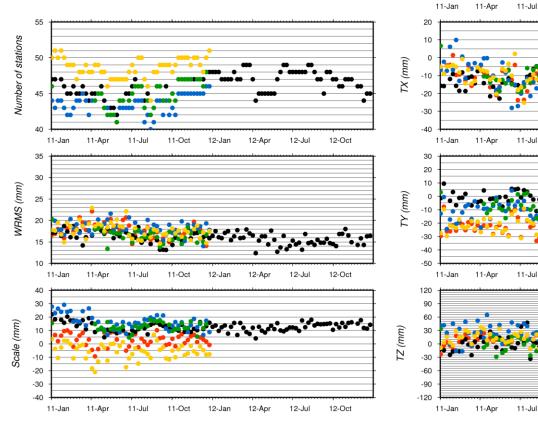
12-Jul

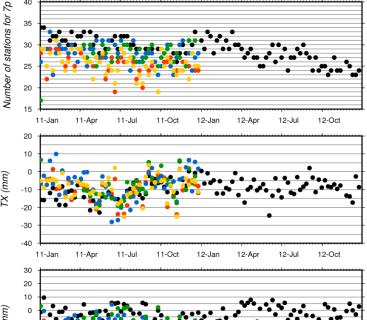
12-Oct

Spot-5 - 2011/2012

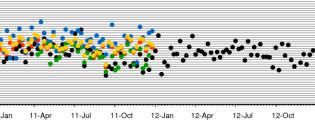
40

35


30


Page 14

Per week comparaison to ITRF2008

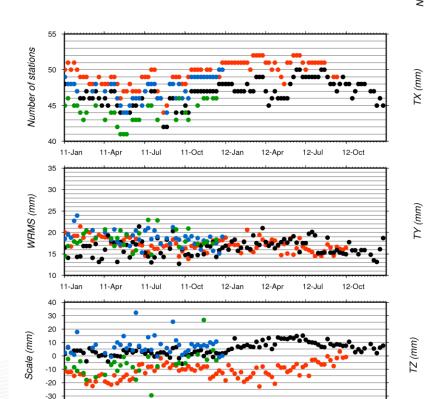


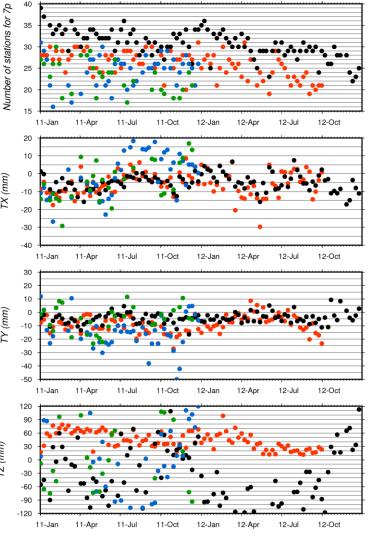
GSC s6 = Spot-5 with SAA corrected data

12-Jan

12-Apr

12-Jul


11-Oct



Cryosat-2 - 2011/2012

Per week comparaison to ITRF2008

Tz: less dispersion for GSC

Page 15

IDS AWG - Toulouse - April 4-5 2013

11-Jan

11-Apr

11-Jul

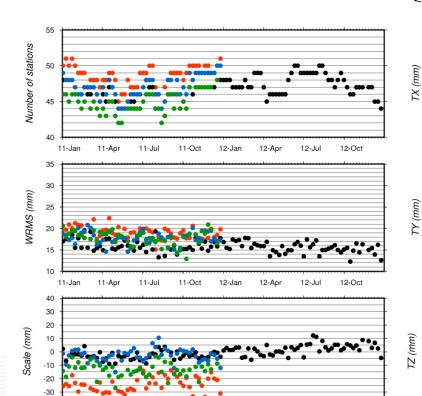
11-Oct

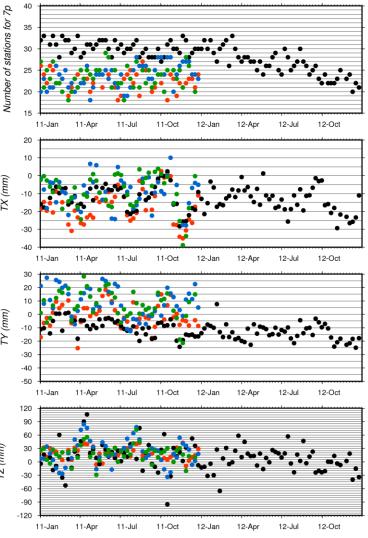
12-Jan

12-Apr

12-Jul

12-Oct


-40



Jason-2 - 2011/2012

Per week comparaison to ITRF2008

Page 16

11-Jan

11-Apr

11-Jul

11-Oct

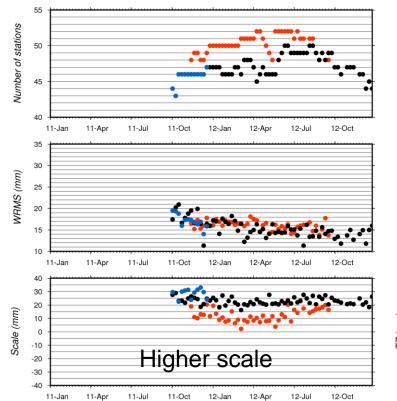
12-Jan

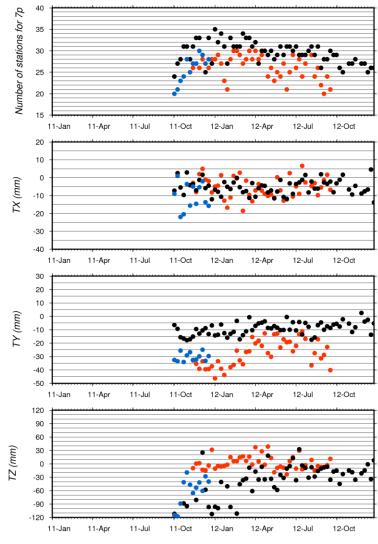
12-Apr

12-Jul

12-Oct

-40




HY-2A - 2011/2012

Page 17

Per week comparaison to ITRF2008

55

50

45

40

35

30

25

20

15

10

40

30

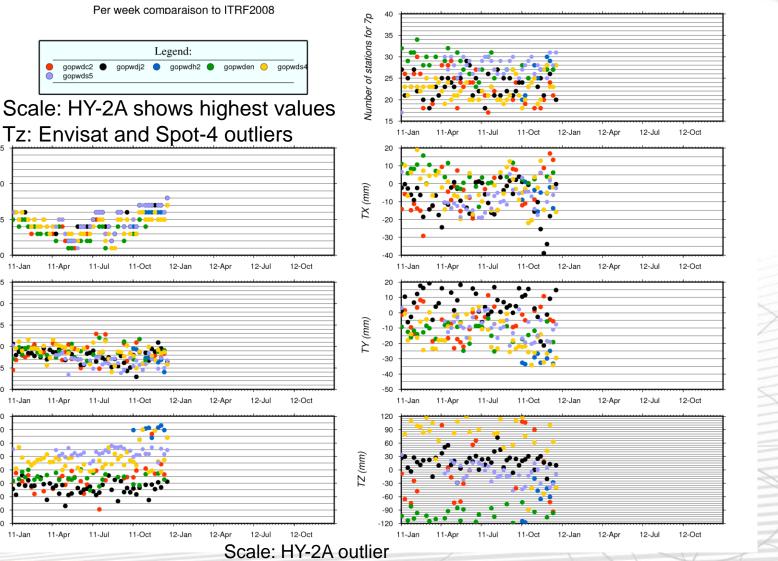
20

10

0

-10 -20

-30


-40

Scale (mm)

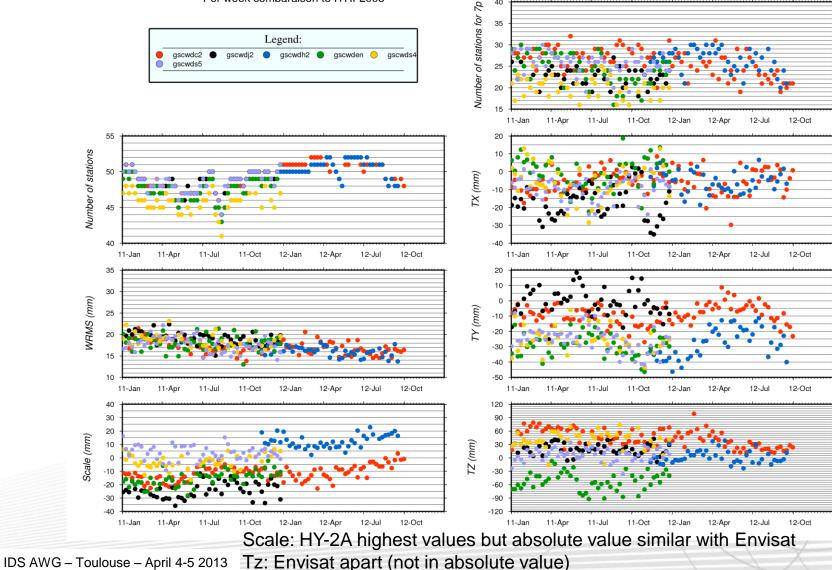
Number of stations

(mm) SMHM

GOP - 2011/2012

IDS AWG - Toulouse - April 4-5 2013

Tz: Envisat and Spot-4 outliers


GSC - 2011/2012

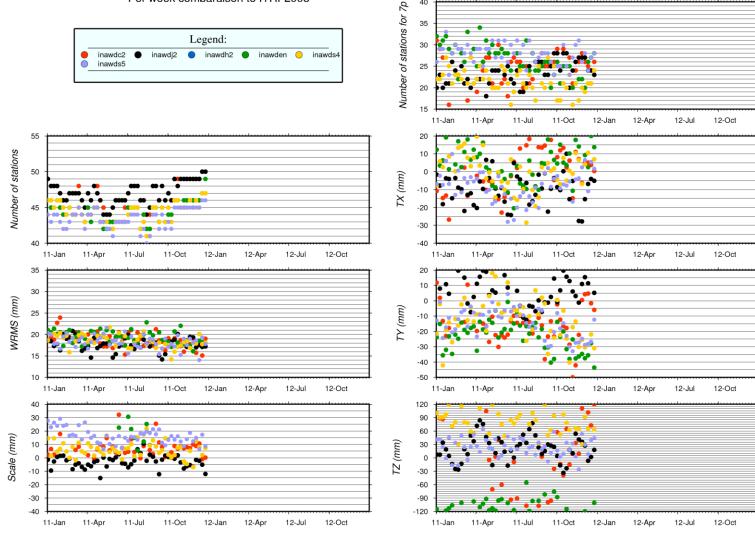
40

35 30 25

Per week comparaison to ITRF2008

Legend:													
	gscwdc2 gscwds5	•	gscwdj2	•	gscwdh2	•	gscwden	0	gscwds4				

Tz: Envisat apart (not in absolute value)


INA - 2011/2012

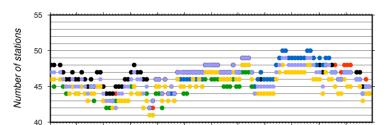
40

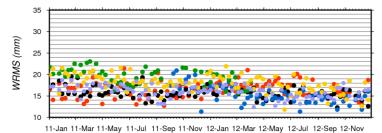
35 30

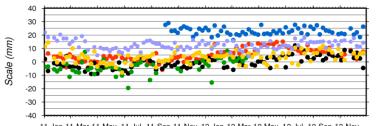
Per week comparaison to ITRF2008

			Le	egend:				
inawdc2 inawds5	•	inawdj2	•	inawdh2	٠	inawden	0	inawds4

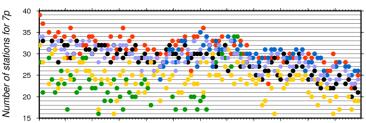
Tz: Envisat outlier, Cryosat-2 high amplitudes and periodic signal

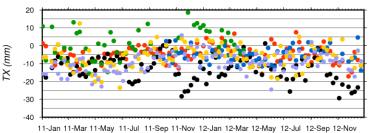

Page 20

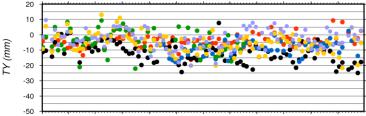

LCA - 2011/2012


Per week comparaison to ITRF2008

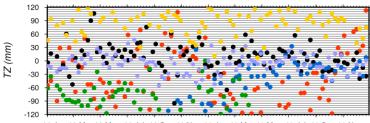
Legend:												
	lcawdc2 lcawds5	•	lcawdj2	•	lcawdh2	٠	lcawden	0	Icawds4			


11-Jan 11-Mar 11-May 11-Jul 11-Sep 11-Nov 12-Jan 12-Mar 12-May 12-Jul 12-Sep 12-Nov




11-Jan 11-Mar 11-May 11-Jul 11-Sep 11-Nov 12-Jan 12-Mar 12-May 12-Jul 12-Sep 12-Nov

Scale: HY-2A outlier



11-Jan 11-Mar 11-May 11-Jul 11-Sep 11-Nov 12-Jan 12-Mar 12-May 12-Jul 12-Sep 12-Nov

11-Jan 11-Mar 11-May 11-Jul 11-Sep 11-Nov 12-Jan 12-Mar 12-May 12-Jul 12-Sep 12-Nov

11-Jan 11-Mar 11-May 11-Jul 11-Sep 11-Nov 12-Jan 12-Mar 12-May 12-Jul 12-Sep 12-Nov

2011 - Statistics

D	9	6	6	2	G
	a	Э	e	4	f

AC +	AC #serie #weeks		wrms[mm]		sca	scale[mm]		x[mm]	Т	y[mm]	Tz[mm]		
			mean	std	mean	std	mean	std	mean	std	mean	std	
gop	en	28	18.796	1.574	-5.998	3.604	3.996	5.910	-12.664	5.577	-105.421	17.531	
gsc	en	51	18.025	1.746	-15.247	5.526	-0.543	8.593	-28.690	7.303	-52.214	20.347	
ina	en	52	19.365	1.455	194.493	123.588	4.929	9.899	-23.573	9.580	-120.704	25.165	
lca	en	54	19.563	1.923	-3.631	5.238	0.713	7.831	-4.380	7.739	-78.602	29.897	
gop	s4	46	18.539	1.840	7.640	7.444	-3.124	9.660	-15.293	10.339	91.926	57.629	
gsc	s4	41	18.532	1.547	-2.934	5.173	-4.971	9.540	-25.239	7.757	39.307	20.078	
ina	s4	52	18.492	1.409	6.393	5.777	1.165	10.948	-12.690	13.373	90.246	32.118	
lca	s4	100	17.868	1.994	3.608	4.277	-6.329	6.364	-5.495	6.546	93.153	34.062	
gop	s5	35	16.506	1.425	12.763	3.241	-8.440	7.069	-9.486	7.055	-8.274	19.486	
gsc	s5	52	17.615	1.727	3.682	5.255	-9.388	6.504	-25.671	7.835	6.350	13.465	
ina	s5	52	18.267	1.477	16.221	5.549	-7.700	8.249	-14.892	9.266	23.771	20.233	
lca	s5	101	15.971	1.413	12.542	3.390	-9.537	5.530	-2.890	6.090	-6.876	19.939	
gop	c2	30	18.353	2.123	-6.682	9.252	-3.530	12.154	-5.090	9.638	17.210	111.087	
gsc	c2	92	17.159	1.585	-11.320	5.568	-5.358	6.752	-8.865	6.425	44.061	19.607	
ina	c2	44	18.664	1.798	7.425	6.439	0.702	12.847	-15.516	12.582	1.255	113.531	
lca	c2	102	16.475	1.843	5.172	4.543	-4.979	4.827	-4.291	4.176	-48.130	70.657	
gop	j2	47	17.764	1.643	-13.594	5.018	-8.821	9.667	7.147	10.161	18.706	18.436	
gsc	j2	51	19.069	1.372	-24.085	5.749	-16.814	9.395	-0.992	9.035	19.796	12.516	
ina	j2	52	17.700	1.471	-2.866	4.665	-10.256	9.744	9.054	10.743	21.002	28.129	
lca	j2	102	15.780	1.363	-0.301	4.358	-12.715	7.063	-11.745	6.342	9.164	30,114	
gop	h2	12	17.117	1.565	29.840	2011 5.291	-10.492	ct 7.538	-30.383		-59.825	31.885	
gsc	h2	44	16.011	1.107	12.410	oct 4.805	-5.448	5.825	-28.170	10.259	2.291	14.830	
lca	h2	63	15.295	2.105	22.866	2.738	-5.167	4.117	267 -9.162	4.699	-47.467	48.793	
	-t-+t						de sheeten	1-12001-12	167. (0.12)		12001 122	S7 stort 5	

- HY-2A shows highest scale values
- Excepted for GSC, Envisat and Spot-4 are still Tz outliers
- INA and LCA have strong Tz std values for DG-XX satellites

SIMPLE TEST ON ALCATEL AND STAREC ANTENNAS

IDS AWG – Toulouse – April 4-5 2013

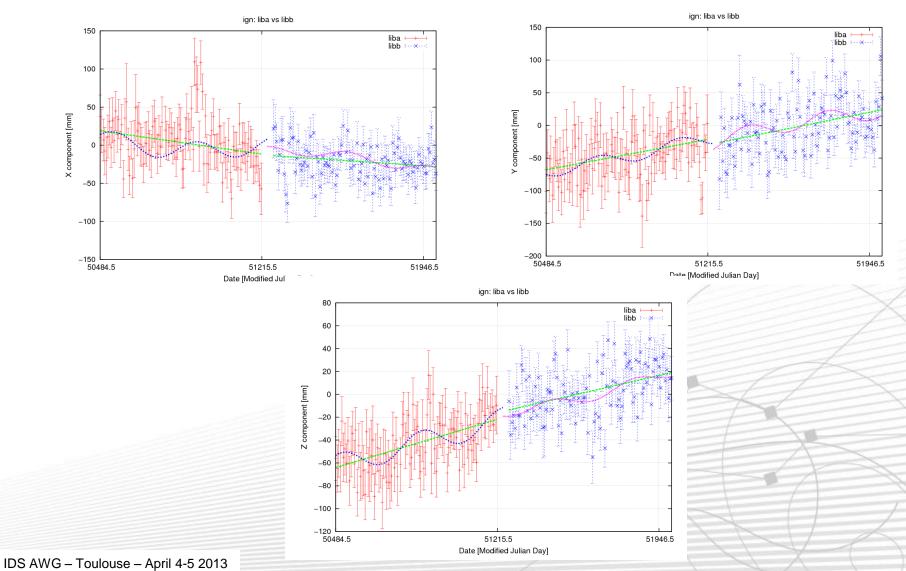
ALCATELvsSTAREC: methodology

- 1. Based on the DORIS site logs, I identified a first set (A) of sites where we moved from acronym XXXA to XXXB so we replaced an Alcatel by a Starec antenna → set A
- From the previous set A, I only kept sites where antenna was only changed (beacon was unchanged) → set B
- 3. From set B, I rejected sites when IGN or LCA had less than 2 years of observations before and after the change.
- 4. I end up with 8 candidates: AREA/AREB KERA/KERB LIBA/LIBB META/METB OTTA/OTTB REYA/REYB RIOA/RIOB and YELA/YELB.
- 5. For each STCD series and for each site, using the a-prior coordinates indicated in the STCDs headers, I recomputed absolute Cartesian coordinates time series and apply to XXXB the local ties between A and B.
- 6. I computed linear regression in all the directions (X, Y, Z) independently based on N points, where N corresponds to the minimum of points in series of XXXA and XXXB (so it varies from one site to the other and also from AC and the 2 projections are based on the same number of points)
- 7. I projected the linear regressions at the median date between last observation of XXXA and first observation of XXXB in the STCDs.
- 8. I projected the differences in N, E, U.

Moreover, for each pair, I also analyzed (when it happened) when we moved from XXXB to XXYB so when we only changed the beacon (from 1st to 3rd generation) and kept the Starec antenna in order to have for each site other points of comparisons. Note that when we moved from YELB to YEMB we also moved from a beacon with an USO to a beacon without USO.

ALCATELvsSTAREC: results

positions differences: (estimated position from XXXB) - (estimated position from XXXA) mean res = mean residuals of linear interpolation or mean interpolation error; unit is mm Similar results wer obtained through harmonic analysis (6m, 1y, 2y...)


	IGN							LCA						
	Ν	East	North	Up	3D	mean	Ν	East	North	Up	3D	mean		
						res						res		
AREA/AREB	83	-355.5	-535.2	-9.1	642.6	20.1	86	-370.1	-502.8	-17.4	624.6	18.4		
AREB/ARFB	83	47.3	93.3	54.6	117.9	18.2	86	15.2	92.9	3.1	94.2	13.3		
KERA/KERB	96	-3.1	7.1	21.6	23.0	22.9	97	-4.5	-16.2	25.0	30.2	16.6		
KERB/KESB	132	9.9	20.6	10.5	25.1	14.1	131	6.7	22.8	5.5	24.4	11.7		
LIBA/LIBB	298	-1.8	-4.4	-24.4	24.8	18.9	301	-9.4	-1.0	-18.5	20.7	15.7		
LIBB/LICB	167	-5.9	-0.8	6.0	8.4	10.5	165	-3.9	-4.2	8.8	10.5	9.1		
META/METB	400	9.1	-13.8	4.5	17.1	14.5	398	9.3	8.4	7.7	14.7	12.0		
OTTA/OTTB	129	-8.5	82.8	-5.8	83.4	19.8	120	-9.7	86.6	-0.5	87.2	17.2		
REYA/REYB	265	-9.9	21.1	-1.5	23.4	14.4	263	-14.1	16.2	12.9	25.0	12.0		
REYB/REZB	296	-1.2	52.2	0.5	52.4	10.9	297	-2.1	50.0	3.0	50.2	8.9		
RIOA/RIOB	107	-12.0	-27.6	-35.1	46.2	20.3	106	-41.1	-16.7	-48.8	66.0	17.0		
RIOB/RIPB	189	-24.9	9.2	11.6	29.0	15.4	192	-27.4	9.8	0.3	29.1	13.2		
YELA/YELB	288	10.4	-15.5	0.9	18.7	11.2	283	7.5	-6.1	3.1	10.2	9.5		
YELB/YEMB	251	-3.2	-3.5	4.4	6.4	7.6	230	0.9	-0.3	-1.1	1.4	6.5		

AREA/AREB differences reflect the earthquake

ALCATELvsSTAREC: results

Example: LIBA vs LIBB from IGN STCD

•

ALCATELvsSTAREC: conclusions

- Very few sites correspond to the selection criteria.
- No evidence of 17mm offset maybe due to the fact that STCDs correspond to stations positions variations after projection in ITRF2008 which may be affected by ALCATEL 2GHz COP offset.
- Change of beacon has impact similar to antenna change.
- Sigmas of positions estimates are at the order of the 10-20mm (which is also the order of week to week rms).