Evolution of dynamical orbit model

Petr Štěpánek, Geodetic Observatory Pecný Carlos Rodriguez Solano, Technische Universität München

DORIS IDS AWG meeting, Prague 31.5.-1.6.2012

Traditional Bernese orbit modeling is based on the empicical and pseudo-stochastic modeling. Dynamical model has been developed in GOP and TUM

Modeling	Empirical-Stochastic	Dynamical
	(reduced-dynamical)	
Satellite attitude and	Not considered	Nominal Box-Wing
geometry		model
Atmosphere density	Not applied	MSIS-86
model		
Atmosphere drag	Absorbed by along track stochastic parameters and Y-constant empirical parameter	Scaling coefficient estimated
Solar radiation Pressure	Absorbed by empirical constant parameter in sun-satellite direction	Scaling coefficient estimated or fixed value closed to "1".
Earth radiation	Not applied	A priori model, reflexivity and emissivity
1-per revolution empirical modeling	Sun-Satellite and Y- direction	Along and cross track (optional)

TESTING

- First results presented at AGU Fall meeting (december 2011), detected a signal of 14-15 days
- Problem related to ocean tidal modeling, recently corrected
- Preliminary comparison with CNES/SSALTO orbits (40 days)
- Preliminary comparison of weekly free network solutions (quarter a year)
- To be confirmed by longer time series and other tests

Comparison of the estimated DORIS orbits and CNES/SSALTO multitechnique

orbits - RADIAL direction

Days 001-040 of 2011

0,05 0

C /

CE

ENI

CD

12

Comparison of the estimated DORIS orbits and CNES/SSALTO multitechnique

orbits - TANGENTIAL direction

Days 001-040 of 2011

S4

S5

ΕN

CR

J2

Comparison of the estimated DORIS orbits and CNES/SSALTO multitechnique

orbits - NORMAL direction

Days 001-040 of 2011

<u>RMS reduction of the orbit using dynamical modeling in comparison to</u>

reduced-dynamical. RMS with respect to SSALTO/CNES orbits as a reference

green - RMS decrement,	, red-	RMS	increment
------------------------	--------	-----	-----------

	Radial	Tangential	Normal
SPOT-4	18%	7%	6%
SPOT-5	16%	6%	9%
Envisat	24%	14%	0%
Cryosat	28%	12%	1%
Jason-2	13%	7%	0%
average	20%	9%	3%
	Radial	Tangential	Normal
SPOT-4	Radial	Tangential 7%	Normal 5%
SPOT-4 SPOT-5	Radial 22% 17%	Tangential 7% 9%	Normal 5% 3%
SPOT-4 SPOT-5 Envisat	Radial 22% 17% 24%	Tangential 7% 9% 14%	Normal 5% 3% 0%
SPOT-4 SPOT-5 Envisat Cryosat	Radial 22% 17% 24% 26%	Tangential 7% 9% 14% 14%	Normal 5% 3% 0% 1%
SPOT-4 SPOT-5 Envisat Cryosat Jason-2	Radial 22% 17% 24% 26% 15%	Tangential 7% 9% 14% 14% 8%	Normal 5% 3% 0% 1% 3%

RMS total

RMS after Mean removal

Comparison of the estimated DORIS orbits and CNES/SSALTO multitechnique orbits

•Days 001-040 of 2011

- •Signal with period about 5 days strongly singnificant for SPOT-5, slightly for SPOT-4.
- •Figure –daily Mean and RMS for SPOT-5

Comparison of the estimated DORIS orbits and CNES/SSALTO multitechnique orbits

•Figure –daily Mean and RMS for Envisat

Free network solutions

•Weekly multi-satellite solutions

• third quarter of 2011

Free network solutions, TRF parameters vs. DPOD08

•Weekly multi-satellite solutions

• third quarter of 2011

Variations of TRF par.

Earth Radiation Model

- Computation of Irradiance [W/m²] at satellite position, assuming:
 - Earth scattering properties approximated as a Lambertian sphere
 - Earth reflected radiation in the visible (albedo)
 - Earth emitted radiation in the infrared
- Types of models:
 - − Analytical: Constant albedo, Earth as point source → large satellite altitude

$$\vec{E}_{ERM-A}(\psi,h) = \frac{A_E E_{sun}}{(R_E + h)^2} \left[\frac{2\alpha}{3\pi^2} \left((\pi - \psi) \cos \psi + \sin \psi \right) + \frac{(1-\alpha)}{4\pi} \right] \hat{r}$$

 $A_E = \pi R_E^2$, $R_E = 6378$ km, $E_{SUN} = 1367$ W/m², h = satellite altitude, $\alpha = albedo (\approx 0.3)$

For LEO satellites:

- Latitude- and time-dependent reflectivity and emissivity (Knocke et al., 1988)
- Latitude-, longitude- and time-dependent reflectivity and emissivity from NASA CERES project

Earth Radiation Model

CERES

(Clouds and Earth's Radiant Energy System) NASA EOS project

Reflectivity (visible) 🗲

Infrared emissivity coeffcient

Emissivity (infrared) 🗲

CERES data, average (2000-2010) for January

Earth Radiation Model

Irradiance [W/m²]

Average values for 12:00 UTC, January 2000-2010

received by a satellite at 700 km altitude at all possible positions

Reflected irradiance → (reflected sunlight) in the visible

Emitted irradiance \rightarrow in the infrared

Integration of irradiance over the area of the Earth visible by the satellite

14

Infrared (emitted) irradiance at all satellite positions

Acceleration due to Earth Radiation

Radial acceleration using: area-to-mass ratio of 0.011 m²/kg (CRYOSAT-2) Average values for 12:00 UTC, January 2000-2010

Acceleration due to Earth Radiation – model differences

FUTURE prospects

Dynamical orbit modeling

- complex testing, long time series
- comparison with external orbits (SSALTO and others)
- internal orbit overlaps
- SLR validation
- Impact on the free network solutions
- Results will be partially presented at IDS DORIS workshop (September 2012), complex presentation planned for AGU Fall meeting (December 2012)

Earth radation

- Studies of Analytical, Knocke and CERES models
- To be presented at IDS DORIS WORKSHOP (September 2012)