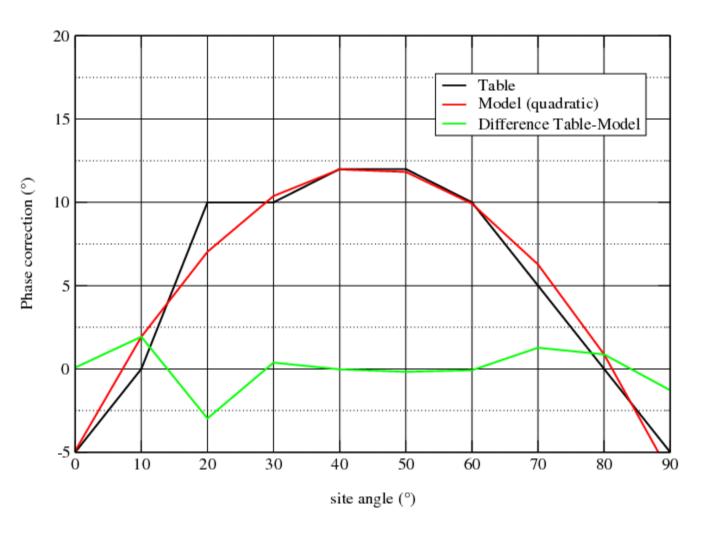
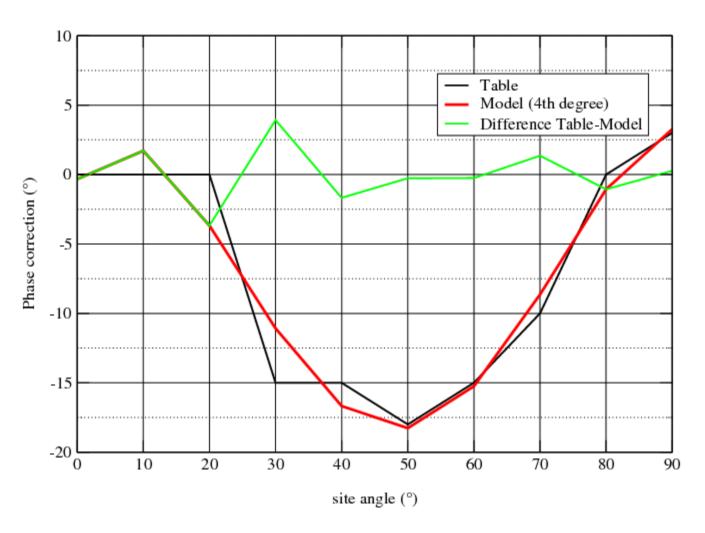
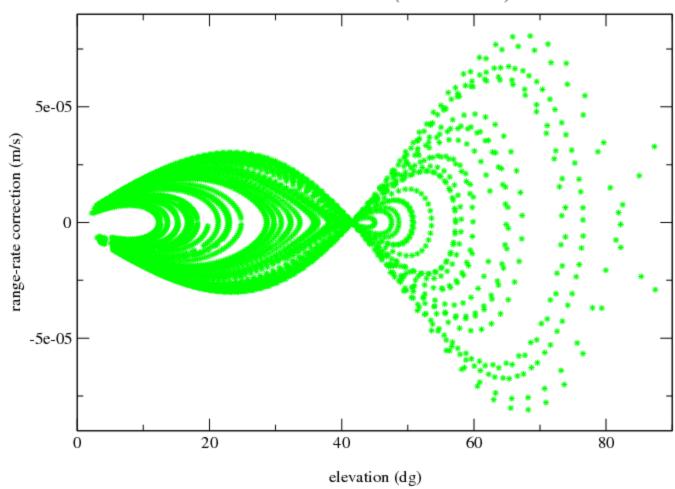

Attempts to implement the elevationdependant DORIS station antenna phase correction


Based on the document CO-SP-DO-OP-2460-CN, available on the IDS web site:


χ(θ)	Ground antennas				
ө Ж	Alcatel Type*		Starec Type*		
(°)	2 GHz	400 MHz	2 GHz	400 MHz	
0	- 5	0	0	0	
10	0	0	0	0	
20	10	0	0	0	
30	10	0	- 15	0	
40	12	0	- 15	0	
50	12	0	- 18	0	
60	10	0	- 15	0	
70	5	0	- 10	0	
80	0	0	0	0	
90	- 5	0	+ 3	0	
ε (°)	2	4	2	4	

DORIS-AWG, May 31 2012, Prague

ALCATEL Antenna


STAREC Antenna

Range-rate correction:

Range-Rate correction as a function of elevation

for STAREC antennas (rms = 2.e-5 m/s)

- Impact of the correction in terms of:
- Residuals
- Measurement zenithal tropospheric bias (MZB)
- Station heights

Remarks:

- mean residuals are 0.327 mm/s rms
- Correction rms is 0.02 mm/s
- → In all cases, we observe an increase of the residuals!

	Without solving for station heights		Solving for station heights			
	Additional noise (mm/s)	ΔMZB (mm)	ΔH station (mm)	Additional noise (mm/s)	ΔMZB (mm)	ΔH station (mm)
Negative correction	+0.015	+1.64	0	+0.019	+1.9	-2.35
Positive correction	+0.021	-1.61	0	+0.015	-1.9	+2.24

CONCLUSION:

- Correction (or implementation) is not convincing in its present state;
- Need to redo the study with the new phase laws established by the CNES "Antenna Laboratory";
- Implementation of full phase wind up (according to the azimuth) should be tested.

Implementation of the azimuth-dependent DORIS Phase Wind Up

A GUIDE TO USING INTERNATIONAL GNSS SERVICE (IGS) PRODUCTS

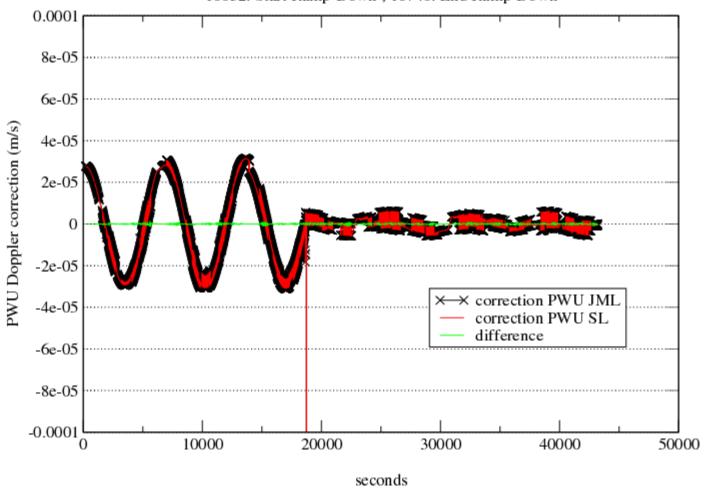
Theory, from→

Jan Kouba Geodetic Survey Division Natural Resources Canada 615 Booth Street, Ottawa, Ontario K1A 0E9 Email: kouba@geod.nrcan.gc.ca

May 2009

The phase wind-up correction (in radians) can be evaluated from dot (\cdot) and vector (\times) products according to (Wu at al., 1993) as follows:

$$\Delta \phi = sign(\zeta) \cos^{-1}(\vec{D}' \cdot \vec{D} / |\vec{D}'| |\vec{D}|), \qquad (20)$$


where $\zeta = \hat{k} \cdot (\vec{D} \times \vec{D})$, \hat{k} is the satellite to receiver unit vector and \vec{D}' , \vec{D} are the effective dipole vectors of the satellite and receiver computed from the current satellite body coordinate unit vectors $(\hat{x}', \hat{y}', \hat{z}')$ and the local receiver unit vectors (i.e. north, east, up) denoted by $(\hat{x}, \hat{y}, \hat{z})$:

$$\vec{D}' = \hat{x}' - \hat{k}(\hat{k} \cdot \hat{x}') - \hat{k} \times \hat{y}',$$

$$\vec{D} = \hat{x} - \hat{k}(\hat{k} \cdot \hat{x}) + \hat{k} \times \hat{y} .$$

Continuity between consecutive phase observation segments must be ensured by adding full cycle terms of $\pm 2\pi$ to the correction (20).

JASON-2 18652: Start Ramp-Down; 18748: End Ramp-Down

Results of the correction on Jason-2:

The RMS of the PWU correction on this half day is 1.61e-5 m/s (0.0161 mm/s)

	Laser residuals (192 meas.)	DORIS residuals (7695 meas.)	Noise removed / introduced
No PWU correction	4.0828 cm	0.301323 mm/s	
+ PWU correction	4.0804 cm	0.301016 mm/s	- 0.0136 mm/s
- PWU correction	4.0853 cm	0.301911 mm/s	+ 0.0188 mm/s

CONCLUSION:

- Everything OK for Jason-2

Results of the correction on TOPEX:

The RMS of the PWU correction on this day is 0.90e-5 m/s (0.0090 mm/s)

	Laser residuals (287 meas.)	DORIS residuals (5297 meas.)	Noise removed / introduced
No PWU correction	0.9525 cm	0.439979 mm/s	
+ PWU correction	0.9528 cm	0.439983 mm/s	+ 0.0013 mm/s
- PWU correction	0.9523 cm	0.439977 mm/s	- 0.0018 mm/s

CONCLUSION:

No reaction of TOPEX residuals...?????????????