

Combination at the Observation Level IERS Working Group

Multi-technique combination for Earth Orientation & Reference Frames Determination

Jean-Yves Richard(1)

and

Daniel Gambis(1), Christian Bizouard(1), Richard Biancale(2),

Géraldine Bourda(3), Florent Deleflie(4), Sylvain Loyer(5), Laurent Soudarin(5)

(1) Observatoire de Paris
(2) CNES, Toulouse
(3) Observatoire de Bordeaux
(4) IMCCE, Lille
(5) CNES-CLS, Toulouse

Combination at the Observation Level

Why combining at the Observation Level

- •Space geodetic techniques have different strengths and weaknesses for recovering geodetic parameters
- •Some systematic behaviour which can easier and more efficiently be detected and reduced at the observation level.

Goal

•This could contribute to the IERS scope for a rigorous combination of ITRF, EOP and ICRF and ZTD.

How

•At the same epoch the observation equations from 4 space geodetic techniques GNSS, VLBI, SLR and DORIS are weekly stacked.

•Combination processes can be performed to determine common geodetic parameters

Combination at the Observation level or at the Normal Equation level

Actual equivalence between observation level and NEq level:

→Only technique independent parameters can be reduced

Test: Jason2 - 7 day arc	Technique	Nb of obs / eliminated obs	Residuals	Orbit # rms
over the period	SLR NEq	2216 / 224	4.1cm	12.1cm
17/8/2008 - 23/8/2008	DORIS NEq	109884 / 52825	.346mm/s	10.6cm
	SLR + DORIS NEq	2247 / 193 109614 / 53095	4.2cm .352mm/s	

Unconstrained Normal Equation

$$\underbrace{A^T \prod A}_{N} \Delta p = \underbrace{A^T \prod \Delta Q}_{S} \rightarrow \underbrace{N \Delta p}_{S} = S$$

$$\Pi = \begin{pmatrix} \frac{1}{\sigma_1^2} & 0 & \cdot & \cdot & 0 \\ 0 & \frac{1}{\sigma_2^2} & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \frac{1}{\sigma_{n-1}^2} & 0 \\ 0 & 0 & \cdot & 0 & \frac{1}{\sigma_n^2} \end{pmatrix}$$

weigth Matrix with σ_i^2 uncertainty of observation *i*

NEq Reduction	NEq Weighted & Cumulated	
$ \begin{pmatrix} N_{II} & N_{IE}^T \\ N_{IE} & N_{EE} \end{pmatrix} \begin{pmatrix} \Delta p_I \\ \Delta p_E \end{pmatrix} = \begin{pmatrix} S_I \\ S_E \end{pmatrix} $	for the i th NEq: $N_i = A_i^T \Pi_i A_i$ and RHS term $S_i = A_i^T \Pi_i \Delta Q_i$ $N_i \Delta p = S_i$ π_i the weighting associated to N_i	
$\begin{cases} N_{II} \Delta p_{I} + N_{IE}^{T} \Delta p_{E} = S_{I} \\ N_{IE} \Delta p_{I} + N_{EE} \Delta p_{E} = S_{E} \\ \Delta p_{I} = N_{II}^{-1} \left(S_{I} - N_{IE}^{T} \Delta p_{E} \right) \end{cases}$	$\underbrace{\left(\sum_{i=1}^{k} \pi_{i} N_{i}\right)}_{N} \Delta p = \underbrace{\left(\sum_{i=1}^{k} \pi_{i} S_{i}\right)}_{S}$ $N \cdot \Delta p = S$	
$N_{IE} N_{II}^{-1} \left(S_I - N_{IE}^T \Delta p_E \right) + N_{EE} \Delta p_E = S_E$	$\pi_i = \frac{n_i}{\Delta Q_i^T \Pi_i \Delta Q_i}$, with n_i = nb obs.of <i>i</i> set	
$\underbrace{\left(N_{EE} - N_{IE} N_{II}^{-1} N_{IE}^{T}\right)}_{N^{\otimes}} \Delta p_{E} = \underbrace{\left(S_{E} - N_{IE} N_{II}^{-1} S_{I}\right)}_{S^{\otimes}}$	$\Pi_i = \text{diagonalmatrix} 1/\sigma_j^2 \text{ for } j = 1.n_i$ or	
$N^{\otimes}.\Delta p_E = S^{\otimes}$ the reduced matrix	π_i = calculated by iterative Helmert algorithm	

Constrained Normal Equation

Continuity constraints on EOP $\Delta eop(t) - \Delta eop(t - \Delta t) = 0 \pm \sigma_{\text{constraint}}$

Stability constraints on station coordinates (X_S,Y_S,Z_S) $\alpha_s \Delta X_s + \beta_s \Delta Y_s + \gamma_s \Delta Z_s = 0 \pm \sigma_s$

Minimal constraints on transformation parameters

Translation
Scale
Rotation $\begin{cases} T_x = 0 + \sigma_{\min}, T_y = 0 + \sigma_{\min}, T_z = 0 + \sigma_{\min} \\ D = 0 + \sigma_{\min} \\ R_x = 0 + \sigma_{\min}, R_y = 0 + \sigma_{\min}, R_z = 0 + \sigma_{\min} \end{cases}$

Local ties constraints on stations coordinates *i* and *j*

$$\begin{cases} \Delta X_{Si} - \Delta X_{Sj} = \Delta X_{Si-Sj} + \sigma_{Si-Sj} \\ \Delta Y_{Si} - \Delta Y_{Sj} = \Delta Y_{Si-Sj} + \sigma_{Si-Sj} \\ \Delta Z_{Si} - \Delta Z_{Sj} = \Delta Z_{Si-Sj} + \sigma_{Si-Sj} \end{cases}$$

These constraints are pseudo observations converted in normal equation

$$N_c \Delta p = S_c$$

and added to the normal equation of observations

$$(N+N_c)\Delta p = S+S_c$$

Normal Equation Resolution

GRGS NEq Combination processing

Working Group on Combination at the Observation Level (COL)

Created in the frame of the IERS in October 2009

WG-COL Objectives

- Study methods and advantages of combining techniques (DORIS, GPS, SLR, VLBI) at the observation level
- Improve resolution and consistency of products (EOP, TRF, CRF) to increase accuracy of parameter determination
- Study technique dependent systematic errors
- Progress in combination methods and strategies (eg. weighting)
- Creating common standards for a rigorous combination
- Mutualize physical parameters (eg. troposphere)
- Extend the combination approach at the level of observation to several research groups in a planned IERS action
- Validate the rigorous combination approach vs. present realizations (C04, ITRF...)
- Prepare future of IERS

Working Group on Combination at the Observation Level (COL)

Project

- •Compare the EOP solutions per technique & combined multi-techniques
- Compare the Stations Coordinates solutions
- •Compare heterogeneous Software by inter-comparing results in parameters estimations

Benchmark

- August 10 to August 30, 2008 including the CONT08 VLBI period (12-26/08/08)
 based on weekly combined SINEX files from all space geodetic techniques together containing normal equations
- parameters
- Geodetic Station coordinates
- Polar motion
- Nutation parameters
- UT1
- eventually Quasar coordinates and troposphere parameters

Centers participating to the COL comparison campaign and techniques performed per center

COL participants & softwares

Analysis Centers	Software	
AIUB	BERNESE software as used by IGS AC CODE for GNSS	
BKG	GEODYN software for SLR	
	BERNESE + GIPSY software for GNSS	
	<i>CALC / SOLVE</i> for VLBI	
DGFI	DOGS 5.0 software for SLR,	
	OCCAM 6.1 LSM + DOGS 5.0 for VLBI	
ESOC	NAPEOS software	
GFZ	EPOSOC 06.61 software	
GRGS	GINS / DYNAMO software	
ASI	GEODYN software	
TUW	VieVS software for VLBI	
ΜΑΟ	CoCos Construct Combined Solution Software	
JPL (potentially)	GIPSY / OASIS	
GSFC (potentially)	GEODYN / SOLVE	
Korea Astro Space Science Institute		

X and Y pole corrections from GRGS NEqs versus C04 series at 6h intervals over 3 weeks

	Technique	Weighted Mean	Weighted RMS
	1- GPS	-60.3	116.8
le	2- VLBI	-91.7	174.2
	3- DORIS	262	1098.2
as 4- SL	4- SLR	-193	799.7
	5- Combined	-66.8	106.2
	6- Combined +TRF	-794	211.48

Daily Pole coordinates from DORIS technique versus C04 series at 1d intervals

X & Y pole series 1050 days -7 January 2007 to 30 May 2010

Site Ny-Alesund : 3 space geodetic techniques co-located, VLBI, GPS, DORIS

IDS Analysis Working Group Paris 23-24 May 2011

14

•NYALES20

ONSALA60

• ZELENCHK

• HARTRAO

BADARY

HOBART12

TSUKUB32

WARK12M

Transformation Parameters for GPS DORIS VLBI SLR and for GLOBAL combination with respect to ITRF2008

Transformation Parameters

Mean	DORIS Mean / σ	COMB Mean / σ
Tx cm	+3.9 / 0.8	+5.9 / 1.1
Ty cm	-0.6 / 0.5	-1.1 / 0.4
Tz cm	-2.9 / 0.8	-2.1 / 0.7
D cm	-0.99 / 0.29	-0.38 / 0.24
Rx µas	+58.8 / 144	545 / 176
Ry µas	-75.3 / 153	199 / 171
Rz µas	+507 / 208	119 / 237
Rate	DORIS	COMB

Rate	DORIS Rate / σ	COMB Rate / σ
Tx cm/y	+1.3 / 0.1	+1.7 / 0.2
Ty cm/y	-0.4 / 0.1	-0.5 / 0.1
Tz cm/y	-1.3 / 0.8	-1.1 / 0.1
D cm/y	-0.05/ 0.10	0.20 / 0.07
Rx µas/y	156 / 39	62 / 59
Ry µas/y	169 / 40	17 / 59
Rz µas/y	213 / 58	126 / 78

COL-WG Prospect

• Re-iterate the CONT08 campaign with homogenized standards and parameters, a priori reference system ITRF2008, ICRF2, EOP-C04, IERS conventions 2010

•NEq multi-techniques combination weekly bases on CONT08 campaign for several participating ACs have to be compared multi-technique combination from different ACs have to be performed

•New sets of data: LEO satellites

Jason-2 (SLR,DORIS,GPS multi-techniques on board) GRACE (SLR,GPS two techniques on board)

- •Study the sub-diurnal EOP variations by deriving hourly or 2-hours estimates
- •Interpolation method of a-priori EOPC04 for the data epoch has to be adopted

•The next participation meetings

-25th general assembly of the IUGG (28 June - 07 July 2011)
-3rd international colloquium "Scientific and Fundamental Aspects of the Galileo Program" (31 August 02 September 2011)
-"Journées de référence spatio-temporels" Paris September 2011
-3rd COL-WG meeting will be held at Paris (October 2011)

•**GRASP** space mission: "**G**eodetic **R**eference **A**ntenna in **S**pace" NASA's Jet Propulsion Laboratory project will carry precise sensors system for GNSS, SLR, DORIS and VLBI geodetic techniques on space board satellite. The launch is expected in 2017.

•HY-2A satellite mission using the SLR GPS and DORIS technique on board

