Attempts to implement the DORIS station antenna phase correction

Based on the document CO-SP-DO-OP-2460-CN, available on the IDS web site:

Reference : CO-SP-D0-OP-2460-CN

Issue : 16.2
Date : 22/04/2008

Page : 14/35

Title: Modelling of DORIS instruments

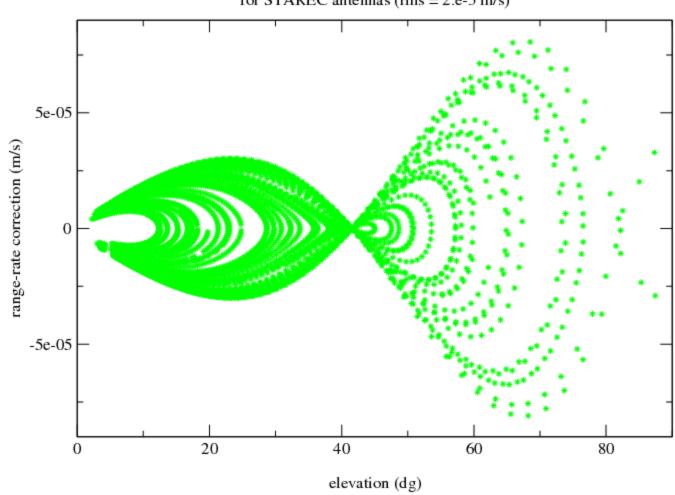
X(θ)	Ground antennas						
ө Ж	Alcate	Type*	Starec Type*				
(°)	2 GHz	400 MHz	2 GHz	400 MHz			
0	- 5	0	0	0			
10	0	0	0	0			
20	10	0	0	0			
30	10	0	- 15	0			
40	12	0	- 15	0			
50	12	0	- 18	0			
60	10	0	- 15	0			
70	5	0	- 10	0			
80	0	0	0	0			
90	- 5	0	+ 3	0			
ε (°)	2	4	2	4			

DORIS-AWG, May 23-24 2011, Paris

 Modeling of the distance correction, according to the formula:

 Δ dist = c/f * phase-in-degree/360

Range correction as a function of elevation



DORIS-AWG, May 23-24 2011, Paris

Range-rate correction:

Range-Rate correction as a function of elevation

for STAREC antennas (rms = 2.e-5 m/s)

- Impact of the correction in terms of:
- Residuals
- Measurement zenithal tropospheric bias (MZB)
- Station heights

Remarks:

- mean residuals are 0.327 mm/s rms
- Correction rms is 0.02 mm/s
- → In all cases, we observe an increase of the residuals!

	Without solving for station heights			Solving for station heights		
	Additional noise (mm/s)	ΔMZB (mm)	ΔH station (mm)	Additional noise (mm/s)	ΔMZB (mm)	ΔH station (mm)
Negative correction	+0.015	+1.64	0	+0.019	+1.9	-2.35
Positive correction	+0.021	-1.61	0	+0.015	-1.9	+2.24

When dividing by 5 the amplitude of the correction:

Remark:

Correction rms is 0.004 mm/s

	Without solving for station heights			Solving for station heights		
	Additional noise (mm/s)	ΔMZB (mm)	ΔH station (mm)	Additional noise (mm/s)	ΔMZB (mm)	ΔH station (mm)
Negative correction	-0.0044	+0.33	0	+0.0040	+0.39	-0.476
Positive correction	+0.0069	-0.33	0	+0.0031	-0.39	+0.476

CONCLUSION:

- Correction (or implementation) is not convincing in its present state;
- Implementation of full phase wind up (according to the azimuth) should be tested.