

Processing of DORIS RINEX data and relationship with the "2.2" format

L. Cerri , F. Mercier

DORIS AWG Meeting, Paris, France, 23-24 May 2011

¢ cnes

Contents

- DORIS RINEX format overview
- Measurement model
- Relationship with to 2.2 format

DORIS RINEX format overview

- Available for DGXX instruments tracking data
 - + Jason-2, Cryos-2
- These instruments deliver synchronous dual frequency phase and pseudo-range measurements (on seven simultaneous channels)
- Rinex format description available at
 - ftp://ftp.ids-doris.org/pub/ids/data/RINEX_DORIS.pdf
- F. Mercier et al., "Jason-2 DORIS phase measurement processing", ASR, 2010

HEADER RECORD, ex: ja2rx11081.001

 Receiver 	3.00 Expert	0 CNES	D 20110323 071127 UTC	RINEX VERSION / TYPE PGM / RUN BY / DATE
information	G = GPS R = GLONASS	E = GALILEO S = GEO	M = MIXED D = DORIS	COMMENT
	JASON-2			SATELLITE NAME
	2008-032A			COSPAR NUMBER
	STILO	CNES		OBSERVER / AGENCY
	CHAIN1	DGXX	1.00	REC # / TYPE / VERS
	DORIS	STAREC		ANT # / TYPE
 Observables 	1.1940	-0.5980 1.0	220	APPROX POSITION XYZ
	0.9768	0.0001 0.0	011	CENTER OF MASS: XYZ
	D 10 L1 L2 C1	C2 W1 W2 F P	Т Н	SYS / # / OBS TYPES
	<u>2011 03 22</u>	00 00 28.855	3281 DOR	TIME OF FIRST OBS
	D 100 2 C1 C2			SYS / SCALE FACTOR
	D 1.900			L2 / L1 DATE OFFSET
Scale factor	49			# OF STATIONS
	DO1 BADB BADARY		12338s002 3 0	STATION REFERENCE
	DO2 COBB COLD BAY		49804s004 3 0	STATION REFERENCE
	הדייים סייים כחה		E000Ee001 0 0	CUMPTON DEPEDENCE
	*			

- Table of ground beacons
 - Correspondence between internal Rinex identifier and DORIS beacon name
 - Frequency shift factor

¢cnes

	D17	TUL	TONIA DELONDA		10002002	2	ň	STATION REFERENCE
	D10	1035	CRASSE		100033003	2	15	STATION REFERENCE
	D19	OND	CAUDOS		100023010	2.	10	STATION ALTEALNOL
	D20 D01	DTOP	DIONVEOC		106006010	3	10	STATION REFERENCE
	D21 D00	NETE	METCALOUT		100023012	2	0	STATION ALTERENCE
	D22 D02	DE ID	DETSMOVI		100002010	о С	0	STATION REFERENCE
	D23 D04	CDID	NE INJAVIN		102025005	ა ი	0	STATION REFERENCE
_	D24 D0E	VDDD	NI-ALLOUND VDJCNOVJDCV		103175005	ა ი	0	STATION REFERENCE
 Frequency 	D23 D06	KADD VIID	KINSNUTAISK		1000495002	ა ი	0	STATION REFERENCE
chiftod	DZ6 D07	TIT	ATTAD TTURENO		123345006	ა ი	0	STATION REFERENCE
Shinted	DZ7	JIUB	JIUPENG MOIDER CEROMO		216025005	ა ი	0	STATION REFERENCE
beacons	D28	MSPB	MOUNT STROMLO		501195004	3	0	STATION REFERENCE
hodoorio	D29	ARPB	AKEQUIPA		422025007	3	U O	STATION REFERENCE
	D30 D31	STJB	ST JUHN'S		401015002	3	U	STATION REFERENCE
	D31 D20	THUB	THULE		430015005	3	U	STATION REFERENCE
	D32 500	EVEB	EVEREST		215015001	3	U	STATION REFERENCE
	D33	CIDB	CIBINONG		231015003	3	U	STATION REFERENCE
	D34	YASB	YARAGADEE		501078011	3	U	STATION REFERENCE
 Time reference 	D35	MIAB	MIAMI		49914SUU3	3	U	STATION REFERENCE
heacons	D36	GREB	GREENBELT		40451S176	3	0	STATION REFERENCE
bcacons	D37	MALB	MALE		22901S002	3	0	STATION REFERENCE
$\mathbf{\lambda}$	D38	AMVB	AMSTERDAM		91401s005	3	0	STATION REFERENCE
	D39	KETB	KERGUELEN		91201s005	3	0	STATION REFERENCE
\backslash	D40	RILB	RIKITEA		92301s003	3	0	STATION REFERENCE
	D41	YEMB	YELLOWKNIFE		40127s009	3	0	STATION REFERENCE
\backslash	D42	DJIB	DJIBOUTI		39901s003	3	0	STATION REFERENCE
	D43	MAHB	MAHE		39801s005	3	0	STATION REFERENCE
$\langle \rangle$	D44	REUB	LA REUNION		97401s002	3	0	STATION REFERENCE
	D45	CRQB	CROZET		91301s003	3	0	STATION REFERENCE
$\langle \rangle$	D46	MATB	MARION ISLAND		30313s003	3	0	STATION REFERENCE
	D47	SYPB	SYOWA		66006 s 003	3	0	STATION REFERENCE
$\langle \rangle$	D48	HBMB	HARTEBEESTHOEK		30302s008	3	0	STATION REFERENCE
PAUB	D49	NOWB	NOUMEA		92701s003	3	0	STATION REFERENCE
		4						# TIME REF STATIONS
KRWB	D06		10.570	22.250				TIME REF STATION
	D15		0.019	-12.598				TIME REF STATION
ILSB	D18		17.699	4.260				TIME REF STATION
HRMR	D48		-0.092	0.000				TIME REF STATION
	20	11	03 22 00	00 0.000	0000			TIME REF STAT DATE
								END OF HEADER

DATA RECORD, ex: ja2rx11081.001

Epoch (reception time in the receiver time scale, *t*) END OF HEADER 2011 03 22 00 00 26.159947870 2.695380325 0 0 2 -130.600 7 -845050.104-57363944.03002 -57362987.80202 D01 3840.256 51.000 0 -123.250 7 936.000 0 -14.900 0 D02 -939750.901-185190.570-77721725.54607 -77721623.62607 -133.050 7 Sampling: 1003.398 1 -118.350 7 3840.256 3.025 1 85.326 1 > 2011 03 22 00 00 29.159947870 0 2.695380325 0 2 -746274.766 -3514914.564-57362489.77802 -57361533.49902 -130.600 7 0, 3 sec, D01 -123.250 7 3840.256 936.000 0 -14.900 0 51.000 0 10 sec. D02 -949663.931 -187144.043-77721871.48507 -77721769.56007 -133.050 7 1003.398 1 3840.256 85.326 1 -118.350 7 3.025 1 > 2011 03 22 00 00 36,159947870 2.695379941 0 0 20 sec. D01 -57357774.07602 -57357522.36202 -130.250 7 -515085.903 0 -3469359.587 0 -125.350 7 3840.256 936.000 0 <u>14.900</u> 0 51.000 0 D02 -970645.752 0 -191278.730 0 -77721528.30407 -77722078.44407 -132.700 7 1003.398 1 3840,256 3.025 1 85.326 1 -118.000 🏷 > 2011 03 22 00 00 30 159947870 0 2 × 6953799<u>4</u>1 N 12 Measurements at "+3 sec." are currently ignored in **CNES** processing

DATA RECORD, ex: ja2rx11081.001

DORIS AWG Meeting – Paris, May 23-24, 2011

Phase measurement model (noise and model errors omitted)

Phase measurement model

See also backup slide "Frequency shifted beacons" for more details

phase count *L*: phase is counted on the – (received – nominal) beat frequency; on board nominal frequencies are always 2036.25 MHz and 401.25 MHz

$$\lambda_{1}L_{1} = d_{0} + d_{T} + d_{1} + \lambda_{1}l_{w} - e + c\tau + k_{1}$$
$$\lambda_{2}L_{2} = d_{0} + d_{T} + d_{2} + \lambda_{2}l_{w} - \gamma e + c\tau + k_{2}$$

Ground nominal frequencies are generally the same as on-board nominal frequencies, except for frequency shifted beacons (k-factor<>0)

 $c/\lambda_1 = 543*5e6*(3/4 + 87*K/(5*2^{26}))$ and $c/\lambda_2 = 107*5e6*(3/4 + 87*K/(5*2^{26}))$

Phase measurement model

Phase windup is currently not modeled

(partly accommodated by estimating a bias per pass for LEO satellites)

$$\lambda_{1}L_{1} = d_{0} + d_{T} + d_{1} + \lambda_{1}l_{w} - e + c\tau + k_{1}$$
$$\lambda_{2}L_{2} = d_{0} + d_{T} + d_{2} + \lambda_{2}l_{w} - \gamma e + c\tau + k_{2}$$

Iono-free phase measurement model

$$\begin{split} \lambda_c L_c &= d_c + c \tau + a \\ \lambda_c L_c &= \frac{\gamma \lambda_1 L_1 - \lambda_2 L_2}{\gamma - 1} \end{split}$$

iono-free combination of the phase measurements

Iono-free phase measurement model

lono-free phase measurement model

$$\lambda_{c}L_{c} = d_{c} + c\tau + a$$

$$a = \frac{\gamma k_{1} - k_{2}}{\gamma - 1}$$

Ambiguity:

bias per each set of continuous phase measurements

eliminated by differentiating measurements at successive epochs (classical Doppler-like processing) within the same set

Iono-free phase measurement model

$$\lambda_c L_c = d_c + c \tau + a$$
$$c \tau = c(\tau_r - \tau_e)$$

Clock offset:

polynomial clock models are currently used to model the receiver τ_r and emitter τ_e clock offsets

The independent variable used for clock models is the on-board time (hereafter designated with t).

Relationship between on-board time *t* and TAI (*T*) is given by $t = T + \tau_r$

(see pseudorange definition in the RINEX format document)

Clock models

Emitter (beacon) clock model:

 $\tau_e = a_0 + a_1 t + \delta a_0 + \delta a_1 t$

A-priori clock-offset model is either 0 or the value given by the linear model in the TIME_REF_STATION section of the rinex header

Clock models

Emitter (beacon) clock model:

$$\tau_e = a_0 + a_1 t + \delta a_0 + \delta a_1 t$$

In general, a linear clock model per pass should be estimated for all beacons.

In the case of doppler-like processing, the δa_0 term is eliminated by differentiating measurements at successive epochs within the same pass. The δa_1 coefficient is equivalent to the usual frequency bias per pass

¢ cnes

Clock models

Receiver clock model:

- Available in the RINEX file's data records $(-)\tau_r$)
- ...or computed using the pseudo-range measurements:

in this latter case, the clock model is a deg. 2 or 3 polynomial (depending on the arc length), whose coefficients are estimated

(see slide on pseudo-range measurement model)

$$\tau_r = \sum_{i=0}^N b_i t^i$$

Pseudo-range measurement model (noise and model errors omitted)

$$C = d + c(\tau_r - \tau_e)$$
$$\tau_r = \sum_{i=0}^{N} b_i t^i$$

- Given the level of noise (~1km), it is not important whether C is the iono-free combination or not
- d is the propagation distance, it can be computed with an orbit having ~ 100 m accuracy (for < 1 microsec. accuracy)</p>
 - An extrapolated orbit over 2 days is usually sufficient (MOE-like processing)
- Our datation processing
 - measurements from time ref. beacons only
 - MOE: 2-day batch, solve for b0,b1,b2, all time ref. beacons held fixed
 - POE: 10-day batch, solve for b0,...,b3, solve for a bias per time ref. beacon (TLSB fixed)

Processing equation summary for the Doppler case

$$\lambda_c \Delta L_c = \Delta d_c + \Delta m_{wet} h_{z,wet} + c \Delta \tau_r + \Delta t \cdot c \delta a_1$$

+ errors and noise

- △ represents the operator that differentiate two successive measurements within the same pass
- The zenith wet troposheric delay and the beacon clock drift are estimated per pass
- The receiver clock is assumed to be known (from polynomial model or from Rinex data record) – errors in this model will be partly accommodated by δa₁

¢ cnes

Processing equation of the DORIS observable in 2.2 format

- 2.2 format: every quantity refers to the 2GHz frequency
- The only time-scale is TAI, hereafter indicated with T
- The observable is an average range rate V, computed over the count interval ΔT , defined as

(Definition given in http://ftp.ids-doris.org/pub/ids/data/doris22.fmt)

 $D = -\Delta L_1$ $\Delta T = \Delta t - \Delta \tau_r$

RINEX L1 observable \rightarrow 2.2 format radial rate observable

In the RINEX file, the sign of the phase count *L* is changed to be consistent with the pseudo-range

Relationship between TAI (*T*), on-board time (*t*), and clock error (τ)

$$\Delta \phi \equiv \int_{T_0}^{T_0 + \Delta T} f_{sat}(T) dT$$

$$\left\langle f_{sat} \right\rangle \equiv \frac{\Delta \phi}{\Delta T}$$

$$\Delta t \equiv \frac{\Delta \phi}{f_{sat,0}}$$

$$\Rightarrow \left\langle f_{sat} \right\rangle = f_{sat,0}$$

J

 $_{0}\frac{\Delta t}{\Delta T}$ < f_{sat} > is the mean frequency over the count interval

This is how we compute the radial rate observable in 2.2 files

$$V \equiv \frac{c}{f_1} \left(f_1 - \left\langle f_{sat} \right\rangle - \frac{D}{\Delta T} \right)$$

¢ cnes

2.2 format radial rate observable \rightarrow **RINEX L1 observable**

$$V = \frac{\Delta d_0 - c\Delta \tau_e}{\Delta T}$$

 $-c\Delta \tau_r + \lambda_1 L_1 = \Delta d_0 - c\Delta \tau_e$

In the 2.2 file , the radial rate observable is the relative velocity between the beacon reference point and the satellite CoM, uncorrected for the beacon frequency bias

$$\frac{c}{f_1} \left(f_1 - \left\langle f_{sat} \right\rangle - \frac{D}{\Delta T} \right) \cdot \Delta T = \Delta d_0 - c \Delta \tau_e$$

Using the same expression as in the previous slides ...

 $\lambda_1 \Delta L_1 = \Delta d_0 + c (\Delta \tau_r - \Delta \tau_e) + corrections...$

The above corrections are computed with a preliminary orbit determination process

¢ cnes

Conclusion

- We encourage users to move towards the "new" RINEX format
- RINEX allows each analysis center to be independent from CNES data preprocessing, as users have access synchronous dual frequency phase and pseudorange measurements
- 3 years of data (from Jason-2 launch) exist in both formats (2.2 and RINEX) \rightarrow allows validation
- Measurement model is more clearly formulated
- 2.2 data production should stop at some point in time (HY2A?)

backups

Coes

Frequency shifted beacons (k-factor)

- L: counted on the (received nominal) beat frequency $L = -(\varphi_r \varphi_0) + k$
- Relationship between phase and receiver time $t \equiv \frac{\varphi_0}{f_0} + const., t = T + \tau_r$
- On board nominal frequency : k=0 (always 2036.25 MHz and 401.25 MHz) **Received phase = phase at emission time (subscript** *e* **denotes emitter)**

$$L = -f_k (T_e + \tau_e) + f_0 (T + \tau_r) = f_k (T - T_e) + f_k (\tau_r - \tau_e) + c \left(\frac{f_0 - f_k}{f_k}\right) t$$

L is the phase count on either one of the 2 frequencies; ambiguities omitted

 $\frac{c}{f_k}L = d + c\tau + \left(c\frac{f_0 - f_k}{f_k}t\right) \longrightarrow This term has been omitted in the phase measurement model. It is = 0 except for frequency shifted beacons (today GAVB.GR3B). If omitted, it is concentrated in the phase measurement is concentrated in the phase measurement in the phase measurement model. It is = 0 except for frequency shifted beacons (today GAVB.GR3B). If omitted, it is concentrated in the phase measurement is concentrated in the phase measurement model. It is = 0 except for frequency shifted beacons (today GAVB.GR3B). If omitted, it is concentrated in the phase measurement is concentrated in the phase measurement model. It is = 0 except for frequency shifted beacons (today GAVB.GR3B). If omitted is concentrated in the phase measurement is concentrated in the phase measurement model. It is a concentrated in the phase measurement model. It is a concentrated in the phase measurement is concentrated in the phase measurement is concentrated in the phase measurement model. It is a concentrated in the phase measurement model. It is a concentrated in the phase measurement is con$ by the estimated beacon clock drift per pass

In the equation above *d* is the full propagation path; including all corrections (tropo, iono, phase center, windup) DORIS AWG Meeting - Paris, May 23-24, 2011