An inter-comparison of zenith tropospheric delays and gradients from DORIS and GPS

<u>Olivier Bock (</u>IGN), Pascal Willis (IGN/IPGP), Yoaz Bar-Sever (JPL)

Context and objectives

- Tropospheric delay modelling is an important aspect of geodetic data analysis
 - High temporal variability of tropospheric humidity impacts microwave signal propagation and station position
- Improvement of geodetic software and reprocessing of geodetic data offer new opportunities to the use of tropospheric estimates (ZTDs, gradients) and derived quantities (TCWV)
 - Assessment of quality of different geodetic techniques (GPS, DORIS, VLBI)
 - Assessment of quality of meteorological observations (radiosonde, satellite) and NWP model products (analyses, reanalyses, forecasts).
 - Assimilation of GPS ZTDs into operational weather forecasting systems (e.g. EGVAP project in Europe since 2005)
- This work aims at assessing the consistency of different datasets (geodetic and meteorological)

Data and methods (1)

• Comparison of ZTD estimates from DORIS/IGN and GPS/IGS, period 2005-2008.

<u>Common sites</u> (35) ● With 4 yrs of data (26) ○ < 4 yrs (9)

Some DORIS sites have several closeby GPS stations.

Bock et al., Adv. Space Res., 2010

Data and methods (2)

Bock et al., Adv. Space Res., 2010

- DORIS/IGN data processing:
 Special reprocessing (1993-2008) base
 - Special reprocessing (1993-2008) based on ignwd08 with:
 - GIPSY/OASIS II, 30-h sessions
 - one ZTD every 20 min (per station, not per satellite)
 - No tropo gradients
 - GMF mapping function
 - Cutoff: 10°
 - Station coordinates fixed
 - new gravity field model (GGM03S),
 - special solar radiation pressure

- GPS/IGS data processing: IGS 'trop-new' product (2000-2008)
 - GIPSY/OASIS II, 24-h sessions
 - IGS orbits, clocks, EOPs
 - One ZTD and one GRAD every 5 min
 - NMF mapping function
 - Cutoff: 7°
 - Antenna PCV model:
 - Relative before 5 Nov 2006 / Absolute after

IGS 'repro1' product (1995-2007)

- GMF mapping function
- Antenna PCV model: absolute
- Updated IGS 'trop-new' product (2007present)
- Similar to repro1

- Post-processing
 - Correct for tropo delay due to difference in height between antenna reference points of paired DORIS and GPS stations
 - Reject ZTDs with formal error > 7mm

GPS solution: IGS 'trop-new' Year 2007

0.978

(c)

90

0.9

Bock et al., Adv. Space Res., 2010

North

Temporal evolution of DORIS – GPS bias (IGS trop-new) 2005 - 2008

Year	Number of comparisons	Median bias (m)	Mean bias \pm one SD (m)	Standard deviation (m)	Correlation coefficient	Number of data pairs
2005	42	-0.0078	-0.0089 ± 0.0042	0.0086	0.971	101,190
2006	41	-0.0074	-0.0081 ± 0.0050	0.0089	0.974	106,909
2007	39	-0.0026	-0.0040 ± 0.0048	0.0080	0.978	99,344
2008	36	-0.0017	-0.0034 ± 0.0057	0.0086	0.978	68,995

Impact of <u>GPS</u> station equipment on ZTD solution (comparison of one DORIS station to several GPS stations)

Impact of <u>DORIS</u> station equipment on ZTD solution (DORIS stations where equipment changed)

Temporal evolution of DORIS – GPS bias (IGS trop-new) 2005 - 2008 Update with IGS/repro1 and trop_new

Horizontal tropospheric gradients (Willis et al., IAG Symp., in press)

- New DORIS data analysis (2007 & 2010)
 - Based on ignwd08 with 1 set of gradient param (GN, GE) / day

Mean gradients (year 2007 / 57 Sites)

DORIS single station (Arequipa, -16.5°N, -71.5°E, 2491m)

North gradient / latitude

(slope predicted by McMillan et al., 1994)

Impact on station coordinates

Solution (ignwd08)	Chi2/ DOF	North (mm)	East (mm)	Up (mm)
w/o gradients	3.11	9.1	11.1	9.2
with gradients	2.39	8.8	11.5	9.0

TBD: reprocess all data (since 1993) and check repeatability

Conclusions

- DORIS ZTD and GPS ZTD agreement (typ. 2007):
 - Median bias (DORIS-GPS) = 2 mm ; mean bias = 4 mm
 - Standard deviation = 8 mm on global average ; larger in Southern hemisphere (possible link with SAA ?)
 - Spurious seasonal signal in ZTD difference (due to GPS ?)
- Sensitivity to changes in equipment:
 - DORIS & GPS: change of antenna type has quite similar impact (5 6 mm ZTD offset) but DORIS network uses a single type of antenna while GPS network uses multiple antennas and correction models
 - DORIS results not sensitive to other changes or upgrades
 - GPS results sensitive to radome, multipath, type of receiver...
- DORIS and GPS Gradients
 - Agreement: fair (gross features are consistent)
 - Including gradients in DORIS data processing improves slightly geodetic results

Perspectives

- DORIS and GPS comparison: ZTD and gradients
 - Extend study over longer periods (IGS repro1, 1995-2007)
 - GPS can help investigate DORIS error sources (Southern hemisphere)
 - DORIS can help investigate GPS error sources (multipath, APCV...)
 - Confirm impact of changes in equipment (DORIS & GPS)
- Meteorology & climate applications:
 - Produce a reference TCWV dataset from DORIS and GPS
 - Use geodetic TCWV dataset to validate radiosonde, satellite products and models over long periods (1995-present)
 - Analyse TCWV variability (seasonal cycle to diurnal cycle) and trends from the different datasets