The IERS Conventions (2010)
the new reference edition of the IERS Conventions

G. Petit and B. Luzum
IERS Conventions Center
The IERS Conventions (2010) are online
comments until 18 October 2010
Workshop on the IERS Conventions: September 2007

See http://www.bipm.org/en/events/iers/

Main topics covered:

Classification of models
Criteria for choosing models
Non tidal loading effects
New models
Possible additions to the Conventions
Technique-dependent effects
Terminology concerning reference systems

Electronic diffusion of the Conventions, including software

The next registered edition was then planned for (end) 2009
Main features of the IERS Conventions (2010) (1)
Chapters and history of updates on http://tai.bipm.org/iers/convupdt/convupdt.html

• Introduction
  – Rewritten (October 2010): Classification of models

• Ch. 1 (General definitions and numerical standards):

• Ch. 2 (Conventional celestial reference system and frame):
  – Rewritten (September 2010): ICRF-2

• Ch. 3 (Conventional dynamical realization of the ICRS):
  – Rewritten (April 2010): DE421

• Ch. 4 (Terrestrial reference systems and frames):
  – ITRF2008 (September 2010)

• Ch. 5 (Transformation between the ITRF and GCRS):
  – FCN model (October 2007)
  – Completely rewritten (June 2009): to implement IAU 2000-2006 resolutions and corresponding terminology
  – Introduction of librations (July 2010)
Main features of the IERS Conventions (2010) (2)

• Ch. 6 (Geopotential):
  – Ocean pole tide (March 2006)
  – New conventional geopotential model (April 2010)
  – Ocean tides (September 2010)

• Ch. 7 (Displacement of reference points):
  – Ocean pole tide loading (September 2006)
  – Conventional ocean tide loading (November 2006)
  – Technique-dependent effects (February 2009)
  – New conventional mean pole (April 2010), also Chapter 6
  – Reorganize chapter; S1-S2 atmosphere pressure loading (September 2010)

• Ch. 8 (Tidal variations in the Earth's rotation):
  – New model for zonal tides (March 2010)

• Ch. 9 (Models for atmospheric propagation delays):
  – Optical: New model (June 2007)
  – Radio: New conventional mapping function (June 2007); new section on ionosphere (February 2009). A priori gradients (September 2010).

• Ch. 10 (General relativistic models for space-time coordinates and equations of motion):
  – New section, implementation of IAU recommendations (October 2008)

• Ch. 11 (General relativistic models for propagation):
  – Minor changes (August 2010)
Updating the IERS Conventions (2010)
Some topics envisioned, but not yet covered

• Ch. 7 (Displacement of reference points):
  – 7.2 Other non-conventional displacements of reference markers …
    • Loading effects **Volunteers needed**
  – 7.3 Displacement of reference points of instruments ….To be completed e.g.
    • Gravitational sag
    • Thermal expansion of monuments / bedrock
    • SLR biases
    • etc…
    • Details to be given in documentation provided by Technique centers

• Ch. 8 (Tidal Variations in the Earth's Rotation):
  – New model for diurnal and semidiurnal EOP variations
The IERS Conventions (2010): other work

- **Software associated** with conventional models
  - Provide documentation and test cases
  - IERS Conventions Software License included (consistent with SOFA)

- Conventions document to be fully cross-referenced.

- Glossary assembled, based *verbatim* on existing material

- **Web page** on "additional material"
  - http://tai.bipm.org/iers/convupdt/convupdt_aux.html
  - To be expanded as needed
Conclusions

• IERS Conventions (2010) now available
  – Thanks to the « Advisory Board for the IERS Conventions update » chaired by Jim Ray and to the many colleagues who contributed.
  – Additional material available on the web

• IERS Conventions updates will continue, starting from the version (2010)
  – Past history of changes will be kept
Thank you
Numerical standards

- Revised to be consistent with the IAU (2009) System of Astronomical Constants and with the recommendations of IAU Commission 52

Tables reformatted to improve readability

<table>
<thead>
<tr>
<th>Table 1.1: IERS numerical standards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Natural defining constants</td>
</tr>
<tr>
<td>(c)</td>
</tr>
<tr>
<td>Auxiliary defining constants</td>
</tr>
<tr>
<td>(k)</td>
</tr>
<tr>
<td>(L_G)</td>
</tr>
<tr>
<td>(L_B)</td>
</tr>
<tr>
<td>(TDB_0)</td>
</tr>
<tr>
<td>(\theta_0)</td>
</tr>
<tr>
<td>(\delta /\delta t)</td>
</tr>
<tr>
<td>Natural measurable constant</td>
</tr>
<tr>
<td>(G)</td>
</tr>
<tr>
<td>Body constants</td>
</tr>
<tr>
<td>(GM_0)</td>
</tr>
<tr>
<td>(J_{20})</td>
</tr>
<tr>
<td>(\mu)</td>
</tr>
<tr>
<td>Earth constants</td>
</tr>
<tr>
<td>(GM_E)</td>
</tr>
<tr>
<td>(a_E)</td>
</tr>
<tr>
<td>(J_{20}^E)</td>
</tr>
<tr>
<td>(1/f^E)</td>
</tr>
<tr>
<td>(g_E)</td>
</tr>
<tr>
<td>(W_0)</td>
</tr>
<tr>
<td>(R_0)</td>
</tr>
<tr>
<td>(H)</td>
</tr>
<tr>
<td>Initial value at J2000.0</td>
</tr>
<tr>
<td>(e_\od)</td>
</tr>
<tr>
<td>Other constants</td>
</tr>
<tr>
<td>(a_u)</td>
</tr>
<tr>
<td>(L_C)</td>
</tr>
</tbody>
</table>

\(^\#\) TCB-compatible value, computed from the TDB-compatible value in [5].

\(^1\) The value for \(GM_E\) is TCG-compatible. For \(a_E\), \(g_E\) and \(R_0\) the difference between TCG-compatible and TT-compatible is not relevant with respect to the uncertainty.

\(^\dagger\) The values for \(a_E\), \(1/f^E\), \(J_{20}^E\), and \(g_E\) are “zero tide” values (see the discussion in section 1.1 above). Values according to other conventions may be found in reference [8].

\(^{11}\) TDB-compatible value. An accepted definition for the TCB-compatible value of \(a_u\) is still under discussion.
Conventional geopotential model

- Based on EGM2008 (Pavlis et al. 2008)
  - Complete to degree and order 2159

<table>
<thead>
<tr>
<th>Orbit radius / km</th>
<th>Example</th>
<th>Truncation level</th>
</tr>
</thead>
<tbody>
<tr>
<td>7331</td>
<td>Starlette</td>
<td>90</td>
</tr>
<tr>
<td>12270</td>
<td>Lageos</td>
<td>20</td>
</tr>
<tr>
<td>26600</td>
<td>GPS</td>
<td>12</td>
</tr>
</tbody>
</table>

- Low-order coefficients and rates adapted from different sources

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value at 2000.0</th>
<th>Reference</th>
<th>Rate / yr⁻¹</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>( C_{20} ) (zero-tide)</td>
<td>-0.48416948 \times 10⁻³</td>
<td>Cheng et al., 2010</td>
<td>11.6 \times 10⁻¹²</td>
<td>Nerem et al., 1993</td>
</tr>
<tr>
<td>( C_{30} )</td>
<td>0.9571612 \times 10⁻⁶</td>
<td>EGM2008</td>
<td>4.9 \times 10⁻¹²</td>
<td>Cheng et al., 1997</td>
</tr>
<tr>
<td>( C_{40} )</td>
<td>0.5399659 \times 10⁻⁶</td>
<td>EGM2008</td>
<td>4.7 \times 10⁻¹²</td>
<td>Cheng et al., 1997</td>
</tr>
</tbody>
</table>

- \( C_{21}(t) \) and \( S_{21}(t) \) designed to provide a mean figure axis corresponding to the mean pole position consistent with ITRF.
Chapter 7

7.1 Conventional displacements of reference markers …

• Ocean loading:
  – Conventional software by D. Agnew

• Ocean pole tide loading
  – Desai (2002) model

• S1/S2 atmospheric loading

http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html
Conventional mean pole model (1)

- A conventional mean pole model, that fits the "actual mean pole" to within \(\sim 10\) mas, ensures
  - that the geopotential field is aligned to the long-term mean pole
  - that effects of the pole tide are accounted for consistently in different analyses.
- The 2003 linear model diverges from "actual mean pole" after 2000
  - Visible in C21/S21 estimates from Lageos (Analysis from John Ries)
Conventional mean pole model (2)

- Proposed IERS (2010) mean pole model
  - A degree 3 polynomial valid until 2010.0 and a linear extrapolation ensuring continuity and derivability at 2010.0
- To be updated as required
- However it has been shown (John Ries) that the conventional mean pole does not match very well the C21/S21 estimates from SLR and GRACE
  - General problem for low degree coefficients: simple model does not match real behavior
  - Recent surface mass trends not captured by model?
Chapter 8

• Model for the effect of zonal tides
  – Deficiency of IERS (2003) determined by R. Gross (JPL) (and others)
  – New model assembled by R. Gross reduces discrepancy particularly at fortnightly and monthly periods

![Graphs showing ocean tides and IERS model](image)
Chapter 9

• Radio techniques:
  – Hydrostatic and wet mapping functions
    • VMF1 with coeffs from numerical weather model
    • GMF when VMF1 not available / necessary
  – APG a priori gradient model
  – All at http://ggosatm.hg.tuwien.ac.at/DELAY

• Correcting the ionosphere for dual-frequency users
  – Standard linear combination (possibly accounting for a time offset between measurements)
  – Models for 3rd order terms
  – Implementation software from M. Hernández-Pajares

\[
\delta \rho_{1,p}^{(1)} = \frac{f_a^2 \delta \rho_{1,p}^{(a)} - f_b^2 \delta \rho_{1,p}^{(b)}}{f_a^2 - f_b^2} = \frac{s_2}{f_a f_b (f_a + f_b)} + \frac{s_3}{f_a^2 f_b^2}
\]

\[
\delta \rho_{1,c}^{(1)} = \frac{f_a^2 \delta \rho_{1,c}^{(a)} - f_b^2 \delta \rho_{1,c}^{(b)}}{f_a^2 - f_b^2} = -\frac{2s_2}{f_a f_b (f_a + f_b)} - \frac{3s_3}{f_a^2 f_b^2}
\]

\[
s_2 = 1.1284 \times 10^{12} \int_{\tau_T}^{\tau_R} N_e B \cos \theta \, dl \approx 1.1284 \times 10^{12} B_p \cos \theta_p \cdot S
\]

\[
s_3 \approx 812 \int_{\tau_T}^{\tau_R} N_e^2 \, dl \approx 812 \eta N_m S
\]

Geopotential: ocean tides

• Effect of the Ocean Tides
  – Section completely rewritten, based on input by R. Biancale
  – New conventional model based on FES2004, consistent with chapter 7

6.3 Effect of the Ocean Tides

The dynamical effects of ocean tides are most easily incorporated by periodic variations in the normalized Stokes’ coefficients of degree n and order m $\Delta C_{nm}$ and $\Delta S_{nm}$. These variations can be written as

$$[\Delta C_{nm} - i\Delta S_{nm}](t) = \sum_{f} \sum_{\pm} (C_{f,nm}^{\pm} + iS_{f,nm}^{\pm}) e^{\pm i\theta_f(t)},$$

(1)

• Sets of coefficients to easily compute the (variations in) Stokes coefficients are provided
IERS Conventions software (1)

- Documentation template
- Provides structure and standard information
  - Variables defined (including units)
  - Notes on usage
  - Test case provided
  - References
IERS Conventions software (2)

- License provided
  - Explicitly states conditions under which software can be used by third parties
  - Consistent with SOFA
  - Necessary because of expanding user base

---

**License provided**

- Explicitly states conditions under which software can be used by third parties
- Consistent with SOFA
- Necessary because of expanding user base

---

Copyright (C) 2009
IERS Conventions Center

---

**Notice to user:**

By using this software you accept the following terms and conditions which apply to its use.

1. The Software is provided by the IERS Conventions Center ("the Center").

2. Permission is granted to anyone to use the Software for any purpose, including commercial applications, free of charge, subject to the conditions and restrictions listed below.

3. You (the user) may adapt the Software and its algorithms for your own purposes and you may distribute the resulting "derived work" to others, provided that the derived work complies with the following requirements:
   a) Your work shall be clearly identified so that it cannot be mistaken for IERS Conventions software and that it has been neither distributed by nor endorsed by the Center.
   b) Your work (including source code) must contain descriptions of how the derived work is based on and/or differs from the original Software.
   c) The name(s) of all modified routine(s) that you distribute shall be changed.
   d) The origin of the IERS Conventions components of your derived work must not be misrepresented; you must not claim that you wrote the original Software.
   e) The source code must be included for all routine(s) that you distribute. This notice must be reproduced intact in any source distribution.

4. In any published work produced by the user and which includes results achieved by using the Software, you shall acknowledge that the Software was used in obtaining those results.

5. The Software is provided "as is" and the Center makes no warranty as to its use or performance. The Center does not and cannot warrant the performance or results which the user may obtain by using the Software. The Center makes no warranties, express or implied, as to non-infringement of third-party rights, merchantability, or fitness for any particular purpose. In no event will the Center be liable to the user for any consequential, incidental, or special damages, including any lost profits or lost savings, even if a Center representative has been advised of such damages, or for any claim by any third party.

Correspondence concerning IERS Conventions software should be addressed as follows:
Additional material

This page presents material that complement the IERS Conventions but are not formally part of them. They are provided as additional information, such as test cases, technical notes written by contributors to the Conventions, etc... They are not subject to the same review process as the Conventions chapters and associated programs.

This page is organized following the order of the Conventions chapters and the documents are presented with the most relevant chapter. Some of this documents have previously been available through the discussion forum which is now closed.

Comments and contributions may be sent to Gérard Pecci and Brian Luzum.

- **Introduction**
  - Additional documents and links:
    - TBD.

- **Chapter 1 - General definitions and numerical standards.**
  - Additional documents and links:
    - TBD.

- **Chapter 2 - Conventional celestial reference system and frame.**
  - Additional documents and links:
    - TBD.

- **Chapter 3 - Conventional dynamical realization of the ICRS.**
  - Additional documents and links:
    - TBD.

- **Chapter 4 - Terrestrial reference systems and frames.**
  - Additional documents and links:
    - TBD.

- **Chapter 5 - Transformation between the International Terrestrial Reference System and Geocentric Celestial Reference System.**
  - Additional documents and links:
    - Example application of the IAU 2000 resolutions concerning Earth orientation and rotation provided by Patrick Wallace.
    - For additional info related to the transformation between systems, see also the site of the IAU Division 1 working group (2003-2006) Nomenclature for Fundamental Astronomy (NFA), with more explanatory material here.

- **Chapter 6 - Geopotential.**
  - Additional documents and links:
    - The IERS Conventions (2003) ocean tides model CSR 3.0 is presented in the manuscript "THE CSR 3.0 GLOBAL OCEAN TIDE MODEL: DIURNAL AND SEMI-DIURNAL OCEAN TIDES FROM TOPEX/POSEIDON ALTIMETRY" by Richard J. Evans and Srinivas Betadpur.
    - The ocean tides model FES2004 described in the IERS Conventions (2010) is presented in the paper "Modelling the global ocean tides: modern insights from FES2004" by F. Lyard et al. (2008). Additional information is provided in a presentation at the IERS Conventions workshop.

- **Chapter 7 - Displacement of reference points.**
  - Additional documents and links:
    - Report by Duncan Agnew on the version dated June 2006 of the routine hardispf to compute the displacement due to ocean tidal loading.

- **Chapter 8 - Tidal variations in the Earth’s rotation.**
  - Additional documents and links:
    - TBD.

- **Chapter 9 - Models for propagation delays.**
  - Additional documents and links:
    - Report by Florian Merlier on the influence of non-synchronous phase measurements on the ionospheric correction in DORIS.

- **Chapter 10 - General relativistic models for space-time coordinates and equations of motion.**
  - Additional documents and links:
    - TBD.

- **Chapter 11 - General relativistic models for propagation.**
  - Additional documents and links:
    - TBD.