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Positioning
Why is a precise (centimeter or even sub-centimeter) positioning of orbits and stations 

using the DORIS technique important? 
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Positioning
Precise satellite orbits :

 Essential for satellite altimetry and ice sheet monitoring

- All recent major altimetry missions carry a DORIS instrument to ensure precise orbit determination. 

- CryoSat-2, one of the key missions for studying ice sheet elevation, carries a DORIS instrument on board to ensure precise orbit 
determination.

 

Sentinel-6A
Image credit: NASA/JPL-Caltech CryoSat-2

 Image credit: ESA 

Altimetry illustration                   Image credit: 
NOAA

 Can provide valuable information for refining atmospheric 
density models (e.g., DTM) through the estimation of 
correction parameters.
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Positioning
Precise station positions :

- Local geophysical information (ground stability, tectonic plate velocities, etc.)

- Essential for precise orbit determination

DORIS Network 2025 – Co-location with Other Space Geodesy Techniques 

 Image credit: IDS website

Toulouse station coordinate time series 
source : IDS Web Service

- Essential for linking space geodesy 
techniques and mitigating network effects 
through a well-distributed station network 
and co-location sites, which is critical for 
realizing the International Terrestrial 
Reference Frame (ITRF) 
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Positioning
Precise station positions & satellite orbits :

- Estimation of tropospheric parameters, directly linked to atmospheric water vapor content — an Essential Climate 
Variable (ECV) identified by the IPCC and GCOS, as water vapor is the most important greenhouse gas and a major 
driver of climate feedbacks. 

- Estimation of ionospheric Total Electron Content (TEC) using DORIS dual-frequency measurements (similar to GNSS-
based studies)

Positive Water Vapor Feedback Loop 
Image credit: NASA Science
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Overview

I. Mathematical Basis for Positioning

I.1. Coordinates and reference sytem
I.2. Cartesian frame and coordinates
I.3. Frame transformations 

II. DORIS Positioning Specifics

II.1. Definition of the DORIS reference frame
II.2. Sensitivity of measurements to frame parameters

III. Practical Positioning process : From observation equations to coordinates

III.1. Least-Squares Adjustment principles
III.2. Linearization of observation equations
III.3. Rank deficiency and Minimum Constraint Conditions (MCC)
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Mathematical Basis for Positioning
 Objective: Positioning in Space Over Time 

To determine the position of an object or station at different moments, we need a consistent mathematical framework to 
describe its location in space.

=> We need a reference system

O1
X⃗

Y⃗
 A

O2 i⃗

j⃗
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Mathematical Basis for Positioning
 Objective: Positioning in Space Over Time 

To determine the position of an object or station at different moments, we need a consistent mathematical framework to 
describe its location in space.

=> We need a reference system

O⃗ 1 A=2 x⃗+1 y⃗=[21]R 1 O⃗ 2 A=−1 i⃗+ j⃗=[−11 ]
R 2

 A

O1
X⃗

Y⃗

O2 i⃗

j⃗
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Mathematical Basis for Positioning
 Objective: Positioning in Space Over Time 

To determine the position of an object or station at different moments, we need a consistent mathematical framework to 
describe its location in space.

=> We need a reference system

Positioning requires defining a reference frame, which provides the context in 
which coordinates are expressed. This frame includes:

- An origin point : O1

- A set of N linearly independent vectors that spans 
an N-dimensional space forming a basis of 
the N-dimensional space : (    ,     ) 

The coordinates of point A represent the unique linear combination of the basis 
vectors that equals the vector from the origin to A. 

O1
X⃗

Y⃗

X⃗ Y⃗
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Mathematical Basis for Positioning
 Cartesian frame and coordinates, in a 3D space :

A Cartesian reference frame consists of: 

- An origin point, which serves as the zero point of the system 

- Three mutually perpendicular axes (typically labeled x, y, and z in 3D) 

- A set of orthonormal basis vector (i, j, and k), aligned with each axis and having unit length. 
 
Cartesian coordinates :

The Cartesian coordinates of a point are a triplet of real numbers (x, y, z) 
that represent the unique linear combination of the basis vectors needed 
to reach the point from the origin : OA = xi + yj + zk
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Mathematical Basis for Positioning
 From one frame to another : 

XR₁ = s * R  * XR₂ + T  

with :

- XR  ₁ (resp. XR  ₂ ) coordinates of X in frame R1 
(resp. R2) 

- T the translation vector from the origin of R2 
to the origin of R1 

- s the scale factor (can be scalar or a diagonal 
matrix for anisotropic scaling) 

- R the rotation matrix that aligns the axes of R2 
to those of R1



13

Mathematical Basis for Positioning
 From one frame to another : 

XR₁ = s * R  * XR₂ + T  

with :

- XR  ₁ (resp. XR  ₂ ) coordinates of X in frame R1 
(resp. R2) 

- T the translation vector from the origin of R2 
to the origin of R1 

- s the scale factor (can be scalar or a diagonal 
matrix for anisotropic scaling) 

- R the rotation matrix that aligns the axes of R2 
to those of R1




14

Mathematical Basis for Positioning
 From one frame to another : 

XR₁ = s * R  * XR₂ + T  

with :

- XR  ₁ (resp. XR  ₂ ) coordinates of X in frame R1 
(resp. R2) 

- T the translation vector from the origin of R2 
to the origin of R1 

- s the scale factor (can be scalar or a diagonal 
matrix for anisotropic scaling) 

- R the rotation matrix that aligns the axes of R2 
to those of R1



15

Mathematical Basis for Positioning
 From one frame to another : 

XR₁ = s * R  * XR₂ + T  

with :

- XR  ₁ (resp. XR  ₂ ) coordinates of X in frame R1 
(resp. R2) 

- T the translation vector from the origin of R2 
to the origin of R1 

- s the scale factor (can be scalar or a diagonal 
matrix for anisotropic scaling) 

- R the rotation matrix that aligns the axes 
of R2 to those of R1



16

Mathematical Basis for Positioning
 From one frame to another : 

XR₁ = s * R  * XR₂ + T  

with :

- XR  ₁ (resp. XR  ₂ ) coordinates of X in frame R1 
(resp. R2) 

- T the translation vector from the origin of R2 
to the origin of R1 

- s the scale factor (can be scalar or a diagonal 
matrix for anisotropic scaling) 

- R the rotation matrix that aligns the axes 
of R2 to those of R1



17

Mathematical Basis for Positioning
 From one frame to another : 

XR₁ = s * R  * XR₂ + T  

with :

- XR  ₁ (resp. XR  ₂ ) coordinates of X in frame R1 
(resp. R2) 

- T the translation vector from the origin of R2 
to the origin of R1 

- s the scale factor (can be scalar or a diagonal 
matrix for anisotropic scaling) 

- R the rotation matrix that aligns the axes 
of R2 to those of R1



18

Mathematical Basis for Positioning
Special Case: When Reference Frames Are Close, in 3D

In the case where frames are close, meaning :
- Their axes are nearly aligned (Rotation angles < 10-5 rad) 
- Their origins are close to each other (Translations < 100 m) 
- Their scales are almost identical ( Scale factor D = s-1 < 10-5 )

We can linearize the transformation equation using a first-order approximation of R :

 

                                                                   with                                            

and for                                                 with i={1,2} :

                                                                      
δXR₁ = δXR  ₂ + Aθ  with θ the 7 transformation parameters.
This corresponds to the 7-parameter Helmert transformation.

X R 1
= X R 2

+T +DX R 2
+ LRX R 2 LR=[ 0 −α3 α2

α3 0 −α1
−α2 α1 0 ]

X R i=[ xyz ]R i=[ x0y0z0 ]ref+[
δ x
δ y
δ z ]R i [δ xδ yδ z ]R1=[δ xδ yδ z ]R2+[

1 0 0 x0 0 z0 − y0
0 1 0 y0 −z0 0 x0
0 0 1 z0 y0 −x0 0 ][

T X
T Y
T Z
D
α1
α2
α3

]
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DORIS Positioning Specifics
 The DORIS reference system in geodesy

Correspond to ITRS : International Terrestrial Reference System

Origin : Earth center of mass, including oceans and atmosphere.

Scale  : Consistent with the SI definition of the meter, 
based on the speed of light in vacuum

Orientation : 

 The Z-axis points towards the International Reference Pole 
                    (mean rotation axis of the Earth)

 The X-axis points towards the intersection of the equator 
and the reference meridian (near Greenwich)

 The Y-axis completes the right-handed coordinate system.
                     Image credit : Geoscience Australia
https://geoscienceaustralia.github.io/ginan/images/ITRF-75pc.png 

https://geoscienceaustralia.github.io/ginan/images/ITRF-75pc.png
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DORIS Positioning Specifics
 Sensitivity of DORIS measurements/models to frame parameters

Origin : The origin of the reference frame corresponds to one of the foci of the DORIS satellite orbits. Therefore, in 
theory, the measurements from the DORIS technique are sensitive to the definition of this origin. 

                                                                      Scale  : Sensitive to the SI definition of the meter. 
                                                                                    DORIS uses radio signals that travel at the speed of light in             
                                                                                     vacuum.                                                                                 

                                                                                    Orientation : Must be conventionally defined !

How is the orientation defined ? We align the DORIS frame to a reference frame such as ITRF, ensuring no net 
global rotation between the two frame.

Image credit : Australian Space 
Academy
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 From observation equations to coordinates

The DORIS observation equations link the observations to parameters like the position coordinates X 
of stations, among others.

Y = f(X, others) 
 
The goal is to estimate X with an overdetermined system — more observations than unknowns, 
with a non-linear model f. 

Many mathematical methods exist to achieve this. In geodesy, the most commonly used are the least 
squares method and the Kalman filter. 

Here, we will focus on the classical least squares method. 

Practical Positioning process
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Least square adjustment

Measurements - Data

Sum of square residuals
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Least square adjustment

Model

Sum of square residuals
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Least square adjustment

Residual = V = Data - Model

Sum of square residuals



25

Least square adjustment

Residual +

Residual -

Sum of square residuals



26

Least square adjustment

Sum of square 
Residuals 

RSS = Σi(Vi
2)

Sum of square residuals
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Least square adjustment

Minimize RSS

Sum of square residuals
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Linear method  
Assume the problem can be written in matrix form as : 
                                  Y = AX (ΣY)
Where :
Y the vector of n observations.
A the design matrix.
X the vector of p parameters to be estimated.
ΣY the associated variance-covariance matrix of the observations (often diagonal),
     known up to a scale factor σ0

2. 

Least square adjustment
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Linear method  
Assume the problem can be written in matrix form as : 
                                  Y = AX (ΣY) 
Where :
Y the vector of n observations.
A the design matrix.
X the vector of p parameters to be estimated.
ΣY the associated variance-covariance matrix of the observations (often diagonal),
     known up to a scale factor σ0

2. 

Solution : 

 
                    where the normal matrix                         ,                             

and the residuals                      . 

Least square adjustment
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 From observation equations to coordinates

The DORIS observation equations link the observations to parameters like the position coordinates X 
of stations, among others.

Y = f(X, others) 
 
The goal is to estimate X with an overdetermined system — more observations than unknowns, 
with a non-linear model f. 

HOW TO USE LEAST SQUARE METHOD WITH NON LINEAR MODEL ?

Practical Positioning process
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 From observation equations to coordinates

The DORIS observation equations link the observations to parameters like the position coordinates X 
of stations, among others.

Y = f(X, others) 
 

HOW TO USE LEAST SQUARE METHOD WITH NON LINEAR MODEL ?

=> The model is linearized around a priori estimates of the parameters. 

Practical Positioning process
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Example : A simple case of a non linear function of two parameters.

Linearization around (x0,y0) :

 

Practical Positioning process

x0 X1 = X0+δX 
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Example : A simple case of a non linear function of two parameters.

Linearization around (x0,y0) :

 

Practical Positioning process

x0

Error = Approx. - f(x1)

X1 = X0+δX 
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Example : A simple case of a non linear function of two parameters.

Linearization around (x0,y0) :

For one observation yi :

 

Practical Positioning process
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Example : A simple case of a non linear function of two parameters.

Linearization around (x0,y0) :

For one observation yi :

 

Practical Positioning process

Design matrix, Model matrix, Jacobian matrix Pseudo-observations

Correction vector
Adjustment vector
Update vector
Parameter corrections
...
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 From observation equations to coordinates

The DORIS observation equations link the observations to parameters like the position coordinates X 
of stations, among others.

Y = f(X, others) 
 
The model need to be linearized around a priori estimates of the parameters.

Solution : iterative process 
 
 
                         where the normal matrix                               ,                             

and the residuals                      . 

   

 

Practical Positioning process

This method requires N to be invertible. 
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 From observation equations to coordinates

N is non invertible when we have :

- Fully correlated parameters. One (or more) parameter is a linear combination of the others : The system is 
UNSOLVABLE ! Remove the correlated parameter(s) ! 

-   Lack of information provided by the observations to estimate all parameters, involving a rank deficiency. 
The system needs to be constrained. In geodesy, this situation is very common.   

The DORIS equation system needs to be constrained as soon as we estimate orbits, Earth Orientation Parameters 
(EOPs), and station coordinates. We must define the frame orientation! The normal matrix then exhibits a rank 
deficiency of 3, corresponding to the three rotational degrees of freedom.

However, if we only estimate station coordinates (with EOPs and orbits fixed), there is no rank deficiency, since the 
fixed EOPs and orbit implicitly define the orientation of the reference frame in accordance with the models.

Practical Positioning process
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DORIS system usual constraints when estimating all parameters:

- Loose constraints :

X = 0 (σ) with σ being much larger than the possible range of the parameter X. 
Example : Station coordinate correction wrt. ITRF2020. For DORIS, this correction is approximately 1cm. 
A σ of 1m or more represents a loose constraint.  

As these constraints do not allow to define the orientation but allow the inversion of N, we speak about a loose 
constrained solution.

- Minimal constraints :

In the case of DORIS, three constraints are applied to address the three rank deficiencies. These are referred to as 
NNR constraints (No Net Rotation), as they mathematically express that the DORIS frame must share the same 
orientation as a reference frame, through a 7-helmert parameter transformation. 

 Since we apply three constraints to address the three rank deficiencies, these constraints are considered minimal, 
as they represent the minimum number required to invert matrix N.   

Practical Positioning process
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DORIS system usual constraints when estimating all parameters:

- Minimal constraints :

In the case of DORIS, three constraints are applied to address the three rank deficiencies. These are referrerd to as 
NNR constraints (No Net Rotation), as they mathematically express that the DORIS frame must share the same 
orientation as a reference frame, through a 7-helmert parameter transformation. 

   

Practical Positioning process

[δ xδ yδ z ]R1=[δ xδ yδ z ]R2+[
1 0 0 x0 0 z0 − y0
0 1 0 y0 −z0 0 x0
0 0 1 z0 y0 −x0 0 ][

T X
T Y
T Z
D
α1
α2
α3

] 7-Helmert 
transformation

Specific case :
DORIS frame = R1
Reference frame in which the a priori coordinates are expressed = R2
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DORIS system usual constraints when estimating all parameters:

- Minimal constraints :

NNR constraint equations: Ri = 0, {1,2,3} (no global 
rotations between DORIS frame and Ref. frame)                  
Let D be the matrix containing the last three rows of B    

Practical Positioning process

δ X DORIS=[
δ x sta1
δ y sta1
δ z sta1

⋮
δ x staN
δ y staN
δ z staN

]
DORIS

=[
1 0 0 x0

sta1 0 z0
sta1 − y0

sta1

0 1 0 y0
sta1 −z0

sta1 0 x0
sta1

0 0 1 z0
sta1 y0

sta1 −x0
sta1 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 x0

staN 0 z0
staN − y0

staN

0 1 0 y0
staN −z0

staN 0 x0
staN

0 0 1 z0
staN y0

staN −x0
staN 0

][
T X
T Y
T Z
D
R1
R2
R3

]=BΘ
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Key points

• Accurate positioning matters (cm => mm) for geophysic 
application

• Mathematical Reminder: Coordinates are linked to a reference 
frame 

• DORIS measurements are sensible to geocenter motion and 
scale of the frame 

• Estimation Method : Least Squares & NNR Contraints in DORIS
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