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Positioning

- :.'l,l' 53[3 *

Why is a precise (centimeter or even sub-centimeter) positioning of orbits and stations
using the DORIS technique important?
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Positioning

Precise satellite orbits :

Essential for satellite altimetry and ice sheet monitoring
- All recent major altimetry missions carry a DORIS instrument to ensure precise orbit determination.

- CryoSat-2, one of the key missions for studying ice sheet elevation, carries a DORIS instrument on board to ensure precise orbit

determination.
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Image credit: ESA

Can provide valuable information for refining atmospheric
density models (e.g., DTM) through the estimation of

. Sea surface
correction parameters. — height
) Altimetry illustration Image credit:
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N osioning

Precisé station positions :

Sara =

- Local geophysical information (ground stability, tectonic plate velocities, etc.)
Image credit: IDS website

- Essential for precise orbit determination

- Essential for linking space geodesy
techniques and mitigating network effects
through a well-distributed station network
and co-location sites, which is critical for
realizing the International Terrestrial
Reference Frame (ITRF)
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Positioning

Precise station positions & satellite orbits :

Sar3 v

- Estimation of tropospheric parameters, directly linked to atmospheric water vapor content — an Essential Climate
Variable (ECV) identified by the IPCC and GCOS, as water vapor is the most important greenhouse gas and a major inel6h
driver of climate feedbacks. E

- Estimation of ionospheric Total Electron Content (TEC) using DORIS dual-frequency measurements (similar to GNSS- 4~
based studies) .20

.
 gmncreased Car
= e
Dioxide Co

™
g
il

""h-..-. T
gWO?

" Global Air
Temperature
“ Increases

Positive Water Vapor Feedback Loop
Image credit: NASA Science
R e ®

EH ’
Y n ﬂui'l- /
OACUNNA o K o




Overview

e

I. Mathematical Basis for Positioning

I.1. Coordinates and reference sytem
1.2. Cartesian frame and coordinates
I.3. Frame transformations

Il. DORIS Positioning Specifics

Il.1. Definition of the DORIS reference frame
11.2. Sensitivity of measurements to frame parameters

lll. Practical Positioning process : From observation equations to coordinates

lll.1. Least-Squares Adjustment principles
11l.2. Linearization of observation equations
111.3. Rank deficiency and Minimum Constraint Conditions (MCC)



Mathematical Basis for Positioning

Gara T

Objective: Positioning in Space Over Time

To determine the position of an object or station at different moments, we need a consistent mathematical framework to
describe its location in space.

=> We need a reference system
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Mathematical Basis for Positioning

Gara T

Objective: Positioning in Space Over Time

To determine the position of an object or station at different moments, we need a consistent mathematical framework to
describe its location in space.

=> We need a reference system
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Mathematical Basis for Positioning

Gara T

Objective: Positioning in Space Over Time

To determine the position of an object or station at different moments, we need a consistent mathematical framework to
describe its location in space.

=> We need a reference system

4

t b A J
. e } \w, 777777777 >~
01 ‘b} 7 s0R 02 i
—_— __ - e :Z —_— N -+ - |- ]_
OlA—2x+1y—[ ] OZA_ 11+J_[ ]
1 R, R,

P i
gk, o @ &

H ’
& s’ Pl
bR :




Mathematical Basis for Positioning

Sar3 v

Obiectie: Positioning in Space Over Time

To determine the position of an object or station at different moments, we need a consistent mathematical framework to
describe its location in space.

=> We need a reference system

Positioning requires defining a reference frame, which provides the context in
which coordinates are expressed. This frame includes: y

ﬁ

- An origin point : O

- A set of N linearly independent vectors that spans
an N-dimensional space forming a basis of 4}
the N-dimensional space : (X , V) O

The coordinates of point A represent the unique linear combination of the basis
vectors that equals the vector from the origin to A.
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Mathematical Basis for Positioning

Sard i

Cartesian frame and coordinates, in a 3D space :

A Cartesian reference frame consists of:
- An origin point, which serves as the zero point of the system
- Three mutually perpendicular axes (typically labeled x, y, and z in 3D)
- A set of orthonormal basis vector (i, j, and k), aligned with each axis and having unit length.

Cartesian coordinates :

The Cartesian coordinates of a point are a triplet of real numbers (x, y, z)
that represent the unique linear combination of the basis vectors needed
to reach the point from the origin : OA = xi + yj + zk
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Mathematical Basis for Positioning
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From one frame to another:

Xr,=S*R *Xg,+T
with :

- Xg, (resp. Xg, ) coordinates of X in frame R,
(resp. Ry)

- T the translation vector from the origin of Ry
to the origin of R4

- s the scale factor (can be scalar or a diagonal
matrix for anisotropic scaling)

- Rthe rotation matrix that aligns the axes of R-
to those of R;
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Mathematical Basis for Positioning

'55.1.'3 T

From one frame to another:

Xr,=S*R *Xg,+ T
with :

- Xg, (resp. Xg, ) coordinates of X in frame R,
(resp. Ry)

- T the translation vector from the origin of R
to the origin of R,

- s the scale factor (can be scalar or a diagonal
matrix for anisotropic scaling)

- Rthe rotation matrix that aligns the axes of R-
to those of R;
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Mathematical Basis for Positioning

'55.1.'3 T

From one frame to another:

X, =8*R *Xj,+ T
with :

- Xg, (resp. Xg, ) coordinates of X in frame R,
(resp. Ry)

- T the translation vector from the origin of Ry
to the origin of R4

- s the scale factor (can be scalar or a diagonal
matrix for anisotropic scaling)

- Rthe rotation matrix that aligns the axes of R-
to those of R;

= ax AR g e o .
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Mathematical Basis for Positioning
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From one frame to another:

X, =S*R *Xg,+T
with :

- Xg, (resp. Xg, ) coordinates of X in frame R,
(resp. Ry)

- T the translation vector from the origin of Ry
to the origin of R4

- s the scale factor (can be scalar or a diagonal
matrix for anisotropic scaling)

- Rthe rotation matrix that aligns the axes
of R: to those of R,
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Mathematical Basis for Positioning
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From one frame to another:

X, =S*R *Xg,+T
with :

- Xg, (resp. Xg, ) coordinates of X in frame R,
(resp. Ry)

- T the translation vector from the origin of Ry
to the origin of R4

- s the scale factor (can be scalar or a diagonal
matrix for anisotropic scaling)

- Rthe rotation matrix that aligns the axes
of R: to those of R,
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Mathematical Basis for Positioning
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From one frame to another:

X, =S*R *Xg,+T
with :

- Xg, (resp. Xg, ) coordinates of X in frame R,
(resp. Ry)

- T the translation vector from the origin of Ry
to the origin of R4

- s the scale factor (can be scalar or a diagonal
matrix for anisotropic scaling)

- Rthe rotation matrix that aligns the axes
of R: to those of R,
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Mathematical BaS|s for Posmonlng

Speclal Case: When Reference Frames Are Close, in 3D

In the case where frames are close, meaning :

- Their axes are nearly aligned (Rotation angles < 10-° rad)

- Their origins are close to each other (Translations < 100 m)

- Their scales are almost identical ( Scale factor D = s-1 < 10°)

We can linearize the transformation equation using a first-order approximation of R :

0 - a . p.

X=Xy +T+DX, +LRX, with LR=| a, 0 —a, Ty
-a, o 0 Ty

X Xo o X O X o X 1 00 x, O Zy —Yoll T,

andfor Xg=|y| =|yo| *|6y| withi={1,2}: |§y| =|Sy| +|0 1 0 y, -z, O x, || D
Zlr, | Zo|er LOZ ], 8zl [6z]x, |0 0 1 2z, y, —-x, O |la,

a,

as;
OXg, = OXg, + AO with 8 the 7 transformation parameters. LI

This corresponds to the 7-parameter Helmert transformation.
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DORIS Positioning Specifics

The DORIS reference system in geodesy

Correspond to ITRS : International Terrestrial Reference System
Origin : Earth center of mass, including oceans and atmosphere.

Scale : Consistent with the S| definition of the meter,
based on the speed of light in vacuum

Orientation :

- The Z-axis points towards the International Reference Pole
(mean rotation axis of the Earth)

- The X-axis points towards the intersection of the equator
and the reference meridian (near Greenwich)

- The Y-axis completes the right-handed coordinate system.

7 Earth

= Buxis of
International «

Reference
Meridian

Rotation

Image credit : Geoscience Australia
https://geoscienceaustralia.github.io/ginan/images/ITRF-75pc.png


https://geoscienceaustralia.github.io/ginan/images/ITRF-75pc.png
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DORIS Positioning Specific

Sar3 v

Sensitivity of DORIS measurements/models to frame parameters

Origin : The origin of the reference frame corresponds to one of the foci of the DORIS satellite orbits. Therefore, in
theory, the measurements from the DORIS technique are sensitive to the definition of this origin.

m1

Scale : Sensitive to the Sl definition of the meter.
DORIS uses radio signals that travel at the speed of light in

P vacuum.

Perigee

/ Y
Satellite Orhit
m2 — 2

Image credit : Australian Space
Academy

Orientation : Must be conventionally defined !

How is the orientation defined ? We align the DORIS frame to a reference frame such as ITRF, ensuring no net
global rotation between the two frame.
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Practical Positioning process

Sara

* From observation equations to coordinates

The DORIS observation equations link the observations to parameters like the position coordinates X
of stations, among others.

Y = f(X, others)

The goal is to estimate X with an overdetermined system — more observations than unknowns,
with a non-linear model f.

Many mathematical methods exist to achieve this. In geodesy, the most commonly used are the least

squares method and the Kalman filter.

Here, we will focus on the classical least squares method.
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Least square adi ustment

Sara
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Least square adjustment

Sara =
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DORIS NETN

a=2.00, b=-1.00, c=0.50 RSS = NaN
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Sara

Least square adjustment
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DORIS WS

a=2.00, b=-1.00, c=0.50 RSS = 83.8
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Sara

Least square adjustment
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Least square adjustm
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Least square adjustment
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Least square adjustment

Gara T

Linear method
Assume the problem can be written in matrix form as :
Y = AX (Zv)
Where :
Y the vector of n observations.
A the design matrix.
X the vector of p parameters to be estimated.
Yy the associated variance-covariance matrix of the observations (often diagonal),

known up to a scale factor 6,2.
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Least square adjustm

Linear method

Assume the problem can be written in matrix form as :
Y = AX (Zv)

Where :

Y the vector of n observations.

A the design matrix.

X the vector of p parameters to be estimated.

Yy the associated variance-covariance matrix of the observations (often diagonal),

known up to a scale factor 6,2.

Solution :
X:(ATZI_[lA)—lAnglY
Tv—1
°N7! : T w1 » V' X,V
Y,=0;N = Wwhere the normal matrix N=A"X,” A, 0¢= —
and the residuals V=Y —-AX.
AT b =




b : y

CES
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Practical Positioning pro

From observation equations to coordinates

-

The DORIS observation equations link the observations to parameters like the position coordinates X
of stations, among others.

Y = f(X, others)

The goal is to estimate X with an overdetermined system — more observations than unknowns,
with a non-linear model f.

HOW TO USE LEAST SQUARE METHOD WITH NON LINEAR MODEL ?
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Practical Positioning pro

From observation equations to coordinates

-

The DORIS observation equations link the observations to parameters like the position coordinates X
of stations, among others.

Y = f(X, others)

HOW TO USE LEAST SQUARE METHOD WITH NON LINEAR MODEL ?

=> The model is linearized around a priori estimates of the parameters.
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~ Practical Positioning pro

Example : A simple case of a non linear function of two parameters.

=

Linearization around (xo,Yo) :

{6, )2F (x0, 90+ (x=x0) §E (b y =) S, yo)= 0, )+ 855K (v, b8y 5L (0 30)

Function Approximation Using Tangent Line

16 __ f(x) = sin(;:)

-==- Tangent at x = n/4 -
1.4 ==

Approx_-~”

12 L
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d"
1.0 z

0.6 // |

0.4 /7‘ I

0.2 o el I
|

0.0
|
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Example : A simple case of a non linear function of two parameters.

=

Linearization around (xo,Yo) :

{6, )2F (x0, 90+ (x=x0) §E (b y =) S, yo)= 0, )+ 855K (v, b8y 5L (0 30)

Function Approximation Using Tangent Line

16 __ f(x) = sin(;:)

—-—- Tangent at x = /4 ’,/"

14 — o

o1 = Approx. - f(x1)

1.0 ’
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0.6 // !

0.4 /7" I

02 o el I
|
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Linearization around (xo,Yo) :

[, )F (x0, 30+ (o) §E (o by =) S o, yo)=F 0, )+ 8 x5E

For one observation y; :

yizfi(x’y):.Vi_fi(XO’yO)zla_x

[Y1_f1(xm.)’0)
Y=
yn_fn(xl]’yl])

of,

of
a_xl(xo:}’o)

of,

Ax (Xu,.}’u)

(XO:YO)

of,

ay

3y (’fo:YO)

ot (XO:yo)

of
5!

]

O X
Sy

161

14

10

5 08

0.6

0.4

0.2

0.0

Practical Positioning pro

Example : A simple case of a non linear function of two parameters.

CES

Sara
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(XOaYU)+6Y$

Function Approximation Using Tangent Line

T T
— fi{x) = sin(x)
—-—- Tangent at x = /4
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f(x1)
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Practical Positioning pro

Example : A simple case of a non linear function of two parameters.

CES
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Linearization around (xo,Yo) :

{6, )2F (x0, 90+ (x=x0) §E (b y =) S, yo)= 0, )+ 855K (v, b8y 5L (0 30)

For one observation y; :

of, of.
yizfi(X’Y):Yi_fi(xoxyo)zla_l;l(xﬂ’yO) i(Xosyo)"(‘jx]

ay 5y
'%(x b 2 y)' Correction vector
Y_[yl_fl(xt”y(’) Jfox T oy lax] Adjustment vector
- : o : ) " Update vector
yn_fn(xl)’.yﬂ) afn afn y p
i ax(xﬂ’yﬂ) E("O’yﬂ) Parameter corrections
Pseudo-observations Design matrix, Model matrix, Jacobian matrix
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From observation equations to coordinates

-

The DORIS observation equations link the observations to parameters like the position coordinates X et
of stations, among others. -

Y = f(X, others)

The model need to be linearized around a priori estimates of the parameters.
Solution : iterative process
S [ ATw—1 a\-1 AT -1
X=(A"2,'A) "A'Z,'Y

T <—1
2 Ar—1 . T —1 _V 2y V
Yy=0,N  wherethenormalmatrix N=A "X A, o=

n—p

and the residuals V:Y—A)A(

This method requires N to be invertible.
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Practical Positioning process

From observation equations to coordinates

N is non invertible when we have :

- Fully correlated parameters. One (or more) parameter is a linear combination of the others : The system is
UNSOLVABLE ! Remove the correlated parameter(s) !

- Lack of information provided by the observations to estimate all parameters, involving a rank deficiency.
The system needs to be constrained. In geodesy, this situation is very common.

The DORIS equation system needs to be constrained as soon as we estimate orbits, Earth Orientation Parameters
(EOPs), and station coordinates. We must define the frame orientation! The normal matrix then exhibits a rank
deficiency of 3, corresponding to the three rotational degrees of freedom.

However, if we only estimate station coordinates (with EOPs and orbits fixed), there is no rank deficiency, since the
fixed EOPs and orbit implicitly define the orientation of the reference frame in accordance with the models.



Practical Positioning process

DORIS system usual constraints when estimating all parameters:

- Loose constraints :

X =0 (o) with o being much larger than the possible range of the parameter X.
Example : Station coordinate correction wrt. ITRF2020. For DORIS, this correction is approximately 1cm.
A o of 1m or more represents a loose constraint.

As these constraints do not allow to define the orientation but allow the inversion of N, we speak about a loose
constrained solution.

- Minimal constraints :

In the case of DORIS, three constraints are applied to address the three rank deficiencies. These are referred to as
NNR constraints (No Net Rotation), as they mathematically express that the DORIS frame must share the same
orientation as a reference frame, through a 7-helmert parameter transformation.

Since we apply three constraints to address the three rank deficiencies, these constraints are considered minimal,
as they represent the minimum number required to invert matrix N.



Practical Positioning process
DORISsystem usual constraints when estimating all paramters:

- Minimal constraints :

In the case of DORIS, three constraints are applied to address the three rank deficiencies. These are referrerd to as
NNR constraints (No Net Rotation), as they mathematically express that the DORIS frame must share the same
orientation as a reference frame, through a 7-helmert parameter transformation.

O X O X
dy| =|6y
8zp |6z

Specific case :
DORIS frame =R1
Reference frame in which the a priori coordinates are expressed = R2

Xper =X, =Xoq=06Xp =0 X poris= X g, =Xo+0 Xy,

WArg— “re =

N N ’
H:.E\‘R :-.uﬂ nﬁ“ﬂuﬁl‘i ’f‘
WA -

1 0P Oapsy. 0 z, —YollT
HHORSISRIEY, — Zoh el Xo D 7-Helmert
R, [0 0 1 2z, y, =X, 0 ||| transformation




- Minimal constraints :

8 X poris=

[ ]
o X
5.ystal

stal

5 X staN

5 y staN
5 v/ staN

O

Practical Positioning pro

DORIS system usual constraints when estimating all parameters:

stal

X
stal
0

stal
Zg

staN
0
staN

Yo

staN
Zy

mmsd> (B'B) 'B" 6 X poris=C 6 X popis=©

NNR constraint equations: R =0, {1,2,3} (no global
rotations between DORIS frame and Ref. frame)
Let D be the matrix containing the last three rows of B

CES

H

b

~

=~

H

N

G

—

N

o N X
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Key points
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- Accurate ositioning matters (cm => mm) for geophysic
application

 Mathematical Reminder: Coordinates are linked to a reference
frame

* DORIS measurements are sensible to geocenter motion and
scale of the frame

* Estimation Method : Least Squares & NNR Contraints in DORIS
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