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Summary

 The Doppler measurement

e Corrections to the doppler measurement:

Time-tagging of the measurements in the TAI scale
Troposphere

lonosphere (and iono-free phase centers)
Light-time correction

Frequency offsets

South Atlantic Anomaly perturbations

Phase Wind-Up
Relativity




The DORIS phase measurement

TS

 Between events 0 and Q N, cycles are emltted by the
DORIS beacon at frequency f,

* This radio electric signal travels through space and reaches
the receiver at events 0 and Q A

* During the time separating events 0’ and Q’ on-board the
satellite, the DORIS receiver has generated N, cycles with its
proper oscillator at frequency f,

Emitter

\}\

* The DORIS receiver then accurately measures the phase
difference between the received and generated signals,
every x (3 or 7 or 10) seconds (Af)

* This measurement can be used as an ambiguous phase
measurement or, by differentiation, as a Doppler count N,

* In that case, the simplified velocity observation equation is: )

f(f f_A;p] i

Lemoine J-M, Capdeville H, Soudarin L (2016) Precise orbit determination and station position estimation using DORIS
RINEX data. Advances in Space Research 58:2677-2690. https.//doi.orq/10.1016/j.a5r.2016.06.024
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 The bits received from the Time Beacons
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are then used to compute the on-board
time scale offset

Individual accuracy : 7 microseconds on
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DORIS/Dlode Time- tagglng accuracy
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Accuracy :1-2

microseconds

(which is equivalent to 7 — 14 mm Along-
Track & 1 — 2 millimetres Radial)

Time Beacons :

- Toulouse (France)

- Kourou (French Guyana)

- Hartebeesthoek (South Africa)
- Papeete (French Polynesia)

- (Yellowknife, Canada)

- Terre Adélie (Antarctica)
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DORIS RINEX measurement Content

> 2001 08 21 00 00 39. 93‘39563?{] 0 2 —-1. 0846‘2‘*5938 0

N
ﬁ [MONTH| [DAY] [HOUR |MINUTE| [ SECOND in DORIS timescale | [ OFFSET between DORIS timescale and TAI from DIODE |

Figure 1: Example of a DORIS/RINEX epoch record

[ Ambiguous phase on Freq. 1| | Ambiguous phase on Freq.2| | Pseudo-ran%e;from Freq.1| | Pseudo-ran%e;rom Freq. 2|
A4 A4
DO1 -1907631.062 1 -375988.691 1 32743488.281 1 32743301.603 1 -130.250 7
-116.250 7 236l.25¢6 1000.820 1 0.000 1 12.732 1
D02 -0.000 1 -0.000 1 32884249.705 2 32884916.645 2 -139.000 7
-126.400 7 23el.256 1000.773 1 le.e28 1 12.738 1
PAN
[ Relative frequency offset of the Receiver |

Figure 2: Example of two DORIS/RINEX observation records

G 5 C1P L1P L2C C2C s2C SYS / # / OBS TYPES
R 2 Cl1C L1C SYS / # / OBS TYPES
E 2 L1B L3I SYS / # / OBS TYPES
S 2 ClC Ll1cC SYS / # / OBS TYPES
D 10 L1 L2 Cl C2 W1 W2 F B T H SYS / # / OBS TYPES

Figure 3: Line of the DORIS/RINEX file header (in grey) descrlbmg the 10 DORIS observation fields ‘z'
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I\/Ieasurement Correctlons

. Ionospherlc correction: the first order correction is obtalned thanks to the
dual frequencies f, and f,,,

* Tropospheric correction: the dry and wet parts are computed either from
meteorological data collected at the station, or from models (e.g. VMF-1). In
any case, an additional tropospheric zenithal bias has to be adjusted at each
pass (at least)

* Frequency offsets of the beacon and receiver oscillator: an empirical
frequency bias has to be adjusted at each pass

* Phase Wind-Up: comes from the respective rotations of the emitting and
receiving antennae

» Relativity: the effect of relativity on the beacon and receiver clock oscillators
has to be taken into account, as well the elongation of the travel time of the

RF signal
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Tro POSP he ric correcti On Refer to EJO Schrama’s presentation
T| me- Of fl.|ght CO rreCtl Refer to Ejo Schrama’s presentatlon

VLU TR vy W\

IO NOS p he rl 8 CO 're Ct| O N Refer also to Ejo Schrama’s presentation, an

——
* lonospheric correctlon the first order correction is obtamed thanks to the dual

frequencies f, and f,,, , where L, fce 264, IS the iono-free phase measurement on 2 GHz:

= /L

2GHz

 CAUTION: to this iono-free measurement are associated iono-free phase centres:

iono— free—2GHz

~  Ta00 mrz,2GH=
r2GHz,iono— free — y 1

Where 761 ionofree 1S the vector from the 2 GHz phase center to the iono-free phase center and

(20)

Vaoniz2gre 1S the vector from the 400 MHz to the 2 GHz phase center.

In the case of DORIS, the nominal frequencies are f,.,. =2.036250 GHz, f, . =401.250 MHz, therefore

y =25.75325356 and the iono-free phase centers are located a few mm away from the 2 GHz phase
centers, in the dlrectlon opp05|te to the 400 MHz phase centers.
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Frequency offsets
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* The simplified equation y,_, = i(fe £ — D0P> assumes the emitter and receiver
frequencies are nominal

* In fact it must be re-written V,_,

DOP
f Afe (fe i Afe (ﬁ* + Afr) i )

Where Af, and Af_are emitter and receiver frequency offsets.

* |n practice, Af, and Af. cannot be determined independently. An approximate value of Af,
is provided by DIODE, thus only Af, is adjusted by least squares during the orbit
adjustment process.
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South Atlantic Anomaly perturbations
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Phase Wind—Up

 The DORIS Phase Wind-Up effect (PWU) is

similar to the GPS PWU

* |t comes from the fact that the phase of
the emitter antenna as well as receiver
antenna are circular and perform a 360°
turn around the antenna axis

* The emitter antenna is pointing upwards,
the receiver one downwards

* If the trajectory between emitter is linear,
the PWU almost cancel out

* However, if the satellite is performing an
attitude manoeuvre, it will be non
negligible
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Relativity

The conversion between the proper time t of a clock and the coordinate time t is approximated by Eq.
(1) (e.g. Eg. 6 in Moyer, 1981 or Eq. 10.7 in Petit and Luzum, 2010):

2
U
L (1)

Where:

U is the gravitational potential at the location of the clock;

Vis the velocity of the clock in the coordinate reference frame;
c is the velocity of light in the vacuum.

The travel time between the emitter and the receiver in the vacuum can be approximated by Eq. (2):

R +R +
At e B+2%m(#} (2)
LR —p

c c
Where:
The subscript e denotes the emitter and r the receiver;

p is the curvilinear trajectory of the photon; close at the first order to the geometrical distance between the
emitter and the receiver;

U = GM, with G the gravitational constant, M the mass of the Earth;

R. and R, are the geometrical distance of the emitter (resp. receiver) to the center of the reference frame,
coincident with (or close to) the center of mass of the Earth.
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Relativity

1. Avpgy =Avgy +Avy, s the relativistic correction which is composed of two parts, the clock

correction Av,,, ~and the travel correction Av,,,
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'he end
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* We have gone quickly through the DORIS Doppler observation itself
and most of its main corrections
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