

Plan for the IDS Contribution to the ITRF 2020

<u>P. Štěpánek</u>¹, H. Capdeville², F.G. Lemoine³, G. Moreaux², L. Soudarin², J.M. Lemoine⁴, J. Saunier⁵, P. Willis⁶, M. Otten⁷, S. Kuzin⁸.

¹Research Institute of Geodesy Topography and Cartography, Geodetic Observatory Pecny, Ondřejov, Czech Republic.

²CLS, Collecte Localisation Satellites, Toulouse, France.

³NASA, Goddard Space Flight Center, Greenbelt, USA.

⁴CNES, Centre National d'Etudes Spatiales, Toulouse, France.

⁵IGN, Institut national de l'information géographique et forestière, Paris, France. ⁶Institut de Physique du Globe de Paris, Gravimetrie et Geodesie Spatiale, Paris, France.

⁷ESA- European Space Agency, European Space Operations Centre ESOC, Darmstadt, Germany.

⁸Russian Academy of Science, Institute of Astronomy, Moscow, Russian Federation.

Previous and forthcoming contributions

- ITRF 2005: 2 analysis centers, 6 satellites
- ITRF 2008: 7 analysis centers, 7 satellites
- ITRF 2014: 6 analysis centers, 11 satellites
- ITRF 2020 (expected): 6 analysis centers, 14 satellites

DORIS system evolution - network

For more detail information see Saunier, 2018

DORIS system evolution – space segment

Satellite	from	to	max. tracking stations	Used for ITRF 2014					
SPOT-2	1992	2008	1	Yes					
T/P	1992	2005	1	Yes					
SPOT-3	1994	1996	1	Yes					
SPOT-4	1998	2013	1	Yes					
Jason-1	2002	2013	2	Some ACs					
Envisat	2002	2012	2	Yes					
SPOT-5	2002	2015	2	Yes					
Jason-2	2008	2020 (?)	7	Yes					
Cryosat-2	2010	2020*	7	Yes					
Hy-2A	2011	2020*	7	Yes					
Saral	2013	2020*	7	Some ACs					
Jason-3	2016	2020*	7	No					
Sentinel-3A	2016	2020*	7	No					
Sentinel-3B	2018	2020*	7	No					
* expected									

DORIS data to be used for ITRF 2020 reprocessing

➤ 3 new satellites

Doppler vs. RINEX observations

- > In previous IDS deliveries for ITRF, only Doppler data were processed
- Now also RINEX data (Phase and pseudorange) are processed
- Most analysis centers transform Phase to Doppler
- Only pseudoranges for time-reference beacons are processed to estimate onboard polynomial clock model
- Advantage of RINEX closer to raw measurements
- Both formats are not available for all the satellites

Type Obs.	Ionosphere	Onboard clock	Phase center offset
Doppler	Corrections from data file	Corrections from data file	Corrections from data file or measured/calculated attitude + nominal offset
RINEX	Measurement on both frequencies	Calculated from pseudorange measurements	Measured/calculated attitude + nominal offset

Scale

- Scale inconsistency in IDS solution for ITRF 2014 (in 2012). Another increment in IDS operational solutions in 2015.
- Study Štěpánek and Filler, 2018 shows the impact of data elevation weighting, preprocessing and phase center offset application (correction from data file/own calculation of attitude)
- Correction in HY-2A phase center offset from Satellite provider

Obs. weight Elevation cut off 10 deg	preprocessing indicators from data file	PCO correction from data file	Hy-2A corrected PCO	Scale w.r.t. ITRF 2014 (mm) in 2011.0-2017.0	
1	Yes	Yes	-	22.1±10.7	
Sin ² E	Yes	Yes	-	15.5±5.1	
Sin ² E	No	Yes	No	14.2±3.3	
Sin ² E	Νο	Νο	Νο	12.7±2.3	
Sin ² E	in ² E No No		Yes	10.5±2.0	

Scale (2) Why the scale bias is dependent on elevation observation weighting?

- **Elevation dependent systematic effect (elevation weighting and cut off)**
- □ Single-satellite solution experiment effect is satellite-specific (including sign)
- □ Scale from single-satellite solutions is more consistent when elevationdependent weighting is applied (except for Sentinel-3A). Hypothesis: systematic effects of different elevation observations better compensate each other.
- Missing satellite PCV model (For stations elevation-dependent PCV model is applied)

□ Multipath? See recent study Ait-Lakbir et al. 2019

Improvements w.r.t. ITRF 2014 strategy

➢ Preprocessing indicators and PCO corrections associated with Doppler observations are not consistent for long time series. Avoiding use of this supplemental information improves scale stability and reduces bias w.r.t. ITRF 2014.

> Elevation dependent weighting significantly increases the stability of the scale and reduces the scale bias w.r.t ITRF 2014.

Corrected HY-2A PCO reduces the scale bias w.r.t. ITRF2014

Still open issues

➢ We need a better understanding of the scale bias between individual analysis centers solutions and optimization of elevation weighting and cut off angle.

Clarification of elevation-dependent systematic effects

South Atlantic Anomaly

- > USO instability due to the radiation trapped in Van Allen belts
- Jason-1 (stong effect), Jason-3, SPOT-5 (moderate effect), Jason-2
- Data corretive models for SPOT-5 and Jason-1 (Capdeville et al. 2016)
- USO models for Jason-2, -3 based on Results from T2L2 (Exertier et al. 2010) under testing
- Strategy to rename stations in SINEX for affected satellites
- > Strategy to estimate frequency offset as linear instead of constant per satellite pass.

Štěpánek et al.: Plan for the IDS Contribution to the ITRF 2020. 27th IUGG General Assembly, Montreal, 10th July 2019

Non-conservative force modeling

- DORIS satellites are LEOs, with various macromodels, attitude and orbit characteristics
- imperfection results to the signal in translation Xt, Yt, Zt and ERP series
- Draconitic signal of 118 days (T/P and Jason satellites)
 - reduced when applying measured attitude for Jason satellites instead of nominal model
 - For T/P no measured attitude is available, need of proper modeling changes in attitude modes and solar array panel pitch biases and orientations

Revision and comparison of non-conservative modeling planned for analysis centers before start of ITRF reprocessing

- SRP coefficient fixed or adjusted?
- Frequency of drag coefficient estimation
- comparison of OPR amplitudes

New combination strategy (1)

Evaluation of the IDS contribution to ITRF2014 (ids 09) wrt the IDS contribution to ITRF2008 (ids 03) revealed

- Worse performance in terms of station position residuals wrt ITRF2008 in the East direction mainly from 1993.0 to 2002.4.
- A degradation of the X and Y pole differences wrt IERS C04 series from 1993.0 to 2002.4.

→ Origin of the degradation?

Table 9

Main statistics of WRMS of the station residuals from IDS 03 (ITRF2008) and IDS 09 (ITRF2014) series. Unit is mm.

Series id.	Time span	East		North		Up		
		Mean	Std	Mean	Std	Mean	Std	
IDS 03	1993.0-2002.4	19.41	2.73	15.09	2.50	18.08	2.56	
IDS 03	2002.4-2008.5	12.97	1.89	10.25	1.94	12.81	1.96	
IDS 03	2008.5-2009.0	16.39	2.24	13.26	1.40	14.82	1.85	
IDS 09	1993.0-2002.4	25.19	4.78	15.78	3.23	19.95	3.86	
IDS 09	2002.4-2008.5	11.97	2.14	8.73	1.51	10.09	1.92	
IDS 09	2008.5-2015.0	9.14	1.23	7.18	1.17	8.05	1.19	

Source: Moreaux et al. (2016).

New combination strategy (2)

35

30

25

20

10

5

1993

1994

1995

1996

2001 2002

2000

WRMS Pos East (mm)

ids03 = ITRF2008 ids09 = ITRF2014 idsXX = NEW for ITRF2020

• For all the time periods, IDS XX performs even better than IDS 03.

Time Period	Series	North [mm]	East [mm]	Up [mm]	-	40 - 35 -	1							
	ids 03	14.5 ± 2.1	16.8 ± 2.6	17.5 ± 2.0	, (mm)	30 -								_
1993.0-1994.1	ids 09	16.9 ± 2.6	23.2 ± 3.8	21.3 ± 3.9	s Norti	25 -				•	,			_
	ids XX	14.3 ± 2.4	16.4 ± 2.4	17.2 ± 2.4	AS Po:	20 -	Ċ.		.	1		: :		
	ids 03	12.1 ± 1.6	14.8 ± 1.8	15.0 ± 2.1	WRN	15 - 10 -		140	3				1	Ś
1994.1-1996.9	ids 09	12.7 ± 1.9	19.0 ± 2.7	16.1 ± 2.5		5 -			· · · · · ·		• • • • • •			-
	ids XX	10.9 ± 1.5	15.1 ± 1.6	14.0 ± 1.9			1993	1994 19	95 1996	1997	1998 1999	2000	2001 2	002
	ids 03	14.4 ± 2.0	16.8 ± 2.1	17.6 ± 2.1		40							1	
1996.9-1998.3	ids 09	16.0 ± 2.6	23.0 ± 2.7	20.3 ± 2.6	(mn	35 - 30 -	•							
	ids XX	13.6 ± 1.8	16.8 ± 1.9	16.7 ± 2.1	i) dn s	25 -			•		•			
	ids 03	13.1 ± 2.1	15.7 ± 2.2	15.2 ± 2.0	AS Po.	20 -			12	Sec. Sec.	Sa Sing an			
1998.3-2002.3	ids 09	13.3 ± 2.2	19.6 ± 3.1	16.3 ± 2.3	WRN	15 -								1
	ids XX	11.2 ± 1.6	15.1 ± 1.9	13.5 ± 1.7		10 -			•				•••	
							1993	1994 19	95 1996	1997	1998 1999	2000	2001 2	00

Summary

- 1) In the new DORIS series, we introduce several strategies to mitigate known errors in the previous realization (ITRF2014)
- 2) Extending the series with recent data, we profit from improvements in the network and from new satellite missions
- 3) We reached the long-term stable combined DORIS scale
- 4) For satellites launched after 2008, RINEX/DORIS format enables to process data closer to the raw measurement.

References

Ait-Lakbir , H.;Couhert, A.; Mercier, F,2019. Identification of the satellite DORIS antenna phase map, and performances of POE-F DORIS-only orbits, IDS AWG meeting, Munich.

Capdeville, H.; Štěpánek, P.; Hecker, L.; Lemoine, J.M., 2016. **Update of the corrective model for Jason-1 DORIS data in relation to the South Atlantic Anomaly and a corrective model for SPOT-5**, *ADVANCES IN SPACE RESEARCH*, 58(12):2628-2650, DOI: <u>10.1016/j.asr.2016.02.009</u>

Exertier, P.; Samain, E.; Bonnefond, P.; Guillemot, P., 2010. Status of the T2L2/Jason-2 experiment, ADVANCES IN SPACE RESEARCH, 46(12):1559-1565, DOI: <u>10.1016/j.asr.2010.06.028</u>

Moreaux, G.; Lemoine, F.G.; Capdeville, H.; Kuzin, S.; Otten, M.; Štěpánek, P.; Willis, P.; Ferrage, P., 2016. **The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame**, *ADVANCES IN SPACE RESEARCH*, 58(12):2479-2504, DOI: <u>10.1016/j.asr.2015.12.021</u>

Saunier, J., 2018. DORIS network 2018 status report, IDS Workshop, Ponta Delgada

Štěpánek, P.; Filler, V., 2018. Cause of scale inconsistencies in DORIS time series, STUDIA GEOPHYSICA ET GEODAETICA, 62(4):562-585, DOI: <u>10.1007/s11200-018-0406-x</u>