

Estimating DORIS drag coefficients : toward an optimum IDS analysis strategy ?

<u>Marie-Line Gobinddass</u>^(1,2), Pascal Willis^(1,2) ⁽¹⁾Institut Géographique National, France ⁽²⁾Institut de Physique du Globe de Paris, France

- Background (atmospheric drag)
- Scientific goals and method used
- Results
 - Plots comparison between strategies
- Conclusions and plans for the future

Estimating drag coefficient

$$\gamma_{Drag} = \mathbf{CR}(\mathbf{t}) \cdot \left(\frac{1}{2m}CV_{sat} \cdot \rho_{atmos} \cdot V^{2}\right)$$

CR = headvyside function (time interval)

 ρ_{atmos} = atm. density =DTM 94

Problems :

- ACs use different time interval (4hr or 6 hr for SPOTs and ENVISAT+ 12hr or 24hr / higher altitude = T/P + Jason)

- specific case of geomagnetic storms, 29 Oct. 2003 – 01 Nov. 2003 (Willis et al., Adv Space Res, 36(3) : 522-533, 2005)

- Is there an optimum choice for the time interval?
- Will it work in all cases (including geomagnetic storms)?
- Satellite dependency (with altitude)?

Other goal : •

۲

- Should we constrain the a priori value?
- Other estimation methods in GOA? White noise, colored noise, random walk?

Method: •

- Process actual DORIS data in 2003 for four weeks (1213, 1216, 1242, 1248)
- Single satellite processing
- Use different processing strategies and compare results (in time) interval / constrain domain)

- Differents types of results
 - Internal consistency
 - (DORIS) Doppler residuals (in mm/s)
 - External consistency
 - Chi2/DOF (merging 7 days into weekly solutions)
 - XYZ weekly residuals vs. ITRF2005 (IGN07D02)
 - Polar Motion = XP, YP daily results vs. GPS/JPL

Daily DORIS Doppler RMS (internal consistency)

Week #1242 (26 OCT- 01NOV 2003) (Halloween geomagnetic storm)

Week #1213 (regular week)

November 12-14, 2008

Weekly Chi2/DOF (merging daily SINEX into weekly SINEX) SPOT5

For smaller interval CHI2 is close to 1

Week #1242

Week #1213

November 12-14, 2008

Weekly North RMS (toward ign07d02) SPOT5

Week #1242

Weekly Vertical RMS (toward ign07d02) SPOT5

Week #1242

Weekly East RMS (toward ign07d02) SPOT5

Week #1242

Daily Pole / bias vs GPS SPOT5

Daily Pole standard deviation SPOT5

Week

Are these results comparable for other satellites ?

- Station coordinates (East) RMS
- XPole precision (after removing bias)

(quiet atmospheric conditions = week # 1213)

Weekly East RMS (toward ign07d02) Week #1213

XPole RMS (after removing bias) Week #1213

Is there an optimum analysis strategy ?

IDS Workshop, Nice

Conclusions and future work

- Estimating drag coeff more frequently provides better geodetic results (typ. 30 mn - 2 hr) for lower satellites (SPOTs + ENVISAT)
- Unique data processing in view of ITRF2008 is possible (also solves problem related to geomagnetic storms)
- Constraining a priori drag value does not make too much difference. Regular least squares is OK
- Need more data processing to refine exact value (with only 2-3 possible strategies): old data + maximum 11yr solar cycle + recent data

Largest Kp values (atmospheric perturbations)

	Value of Kp	Weeks	Year	Date	
	349	1405	2006	21/12/06	
	328	1141	2001	24/11/01	
	324	1245	2003	20/11/03	
	315	1296	2004	10/11/04	
	314	1296	2004	09/11/04	
	313	983	1998	09/11/98	
	313	1296	2004	08/11/04	
	310	1139	2001	06/11/01	
	308	721	1993	04/11/93	
	304	1242	2003	31/10/03	
	302	1242	2003	29/10/03	
	295	1137	2001	22/10/01	
	295	1032	1999	22/10/99	
	279	1082	2000	05/10/00	
November 12-14, 2008		IDS Wo	IDS Workshop, Nice		

Whitenoise/ Randomwalk : SPOT5

Week #1213, Whitenoise

Week #1213, Randomwalk

November 12-14, 2008

Whitenoise/ Randomwalk : SPOT5

Week #1242, Whitenoise

Week #1242, Randomwalk

Geomagnetic storm week Kp= 304

November 12-14, 2008

Weekly North RMS (toward ign07d02) Week #1213

November 12-14, 2008

IDS Workshop, Nice

21/20

Weekly North RMS (toward ign07d02) Week #1242

2008

Weekly East RMS (toward ign07d02) ENVISAT

Week #1242 Week #1213

November 12-14, 2008

Weekly East RMS (toward ign07d02) SPOT2

Week Geoma

November 12-14, 2008

IDS Workshop, Nice

Drag Coefficient

DORIS /SPOT drag coefficients Gipsy/Oasis II daily estimations (at 21:00)

Year

November 12-14, 2008

Thank you for your attention !!!

November 12-14, 2008