

DORIS Analysis at CSR

J. C. Ries and M. K. Cheng

The University of Texas at Austin Center for Space Research Austin, TX 78712

- Orbit comparisons for Jason-1 (MOE and POE)
- Analysis of effect of South Atlantic / South American Anomaly
- Contribution of DORIS to multi-technique orbits
- Contributions of DORIS to gravity time series

- DORIS fits significantly better on Jason-1 than T/P (excluding stations affected by South Atlantic Anomaly)
 - RMS on T/P averages 0.46 mm/s vs 0.37mm/s on Jason-1
 - MOE orbits from DORIS are about twice as accurate as those from T/P

	Jas (MOE v	son /s POE)	TOPEX (MOE vs POE)		
Jason Cycle	Mean (mm)	RMS (mm)	Mean (mm)	RMS (mm)	
3	-1.3	14.9			
4	-1.6	14.1			
5	0.9	15.6			
6	8.6	24.1			
7	9.2	34.8			
8	2.8	15.7	-2.1	25.4	
9	-0.3	15.2	-0.7	35.0	
10	-1.1	19.4	-7.8	54.4	
11	0.9	16.6	-2.8	61.6	
12	9.3	26.6	5.9	33.5	
Avg	2.7	19.7	-1.5	42.0	

CNIES (SL D/DODIS)

• As part of Jason-1 Cal/Val, CNES orbits based on SLR/DORIS were compared to nominal CSR orbits (also using SLR/DORIS) as well as with altimeter crossovers

CHES (SER/	DORIS								
	Crossove	er (CSR)	Crossover (CNES)		Radial	Diff	Х	Y	Z
Cycle	Mean (mm)	RMS (mm)	Mean (mm)	RMS (mm)	RMS (mm)	Mean (mm)	Mean (mm)	Mean (mm)	Mean (mm)
8	5	62.5	14	64.6	14	(4)	3	1	3
9	2	59. 7	7	60.6	17	3	5	6	3
10	-6	62.5	-3	(66.3)	(27)	2	2	8	5
11	-11	63.1	-8	61.4	14	0	-3	10	7
12	-9	56.5	-7	56.5	12	0	-4	7	-7
13	-3	62.4	12	63.2	17	0	-3	8	-12
14	-7	59.8	6	59.7	14	-1	-7	3	3
15	-4	58.0	8	58.0	16	-1	-5	2	3
16	-7	62.0	10	62.9	15	-1	-3	-4	1
17	4	60.4 <	21	63.8	14	-1	-2	-1	4
18	-5 /	59.2	7	56.8	12	0	-2	-5	1
19	\ 7 /	61.9	18	63.3	13	-1	2	-3	2
20	8	61.4	14	61.7	12	-1	3	4	5
Mean	-2	60.7	8	61.4	15	0	-1	3	1
			\sim						

- Other orbits from CNES, NASA, JPL, JPL/IGN, DEOS and CSR, based on various combinations of tracking systems, were compared similarly
- Consistency between various groups providing orbits was very good, generally better than 2 cm radially and 1 cm in centering

Time Series Plots

Contribution of DORIS to Jason-1 POD

Case	Cycle 8 [cm]				Cycle 10			
(10 cm for SLR, 2mm/s for DORIS, 25 cm for CPS)	Xover		SLR residuals (>70deg)		Xover		SLR residuals (>70deg)	
	mean	rms	mean	rms	mean	rms	mean	rms
DORIS + SLR	0.45	6.25	0.23	1.01	-0.55	6.26	0.52	1.09
GPS-only	0.56	6.24	0.00	0.94	0.59	6.15	-0.75	1.38
GPS + DORIS	0.77	6.19	0.05	0.92	0.01	5.97	-0.71	1.26
GPS + SLR	0.18	6.13	-0.08	0.77	0.15	6.00	-0.56	0.98
GPS + SLR + DORIS	0.39	6.12	-0.02	0.76	-0.16	5.92	-0.57	1.00

Combining DORIS with other data types improves the orbit quality Weighting of DORIS not overly sensitive; 1-2 mm/s seems appropriate

SAA Effect on Jason-1

- It is clear that the oscillator on Jason-1 experiences significant frequency changes during exposure to the increased radiation environment of the SAA
 - Effect on station positioning is so serious that geodetic applications for these sites is not possible; effect appears to be getting worse with time
 - Effect on POD appears to be less serious, so far

Jason-1 Blackjack GPS Receiver Resets

DORIS on Jason-1 and T/P

Station

Geodetic Consequences

- There is a systematic error in the frequency model used to scale phase to range that is the result of the SAA effect, which is affecting all DORIS data from Jason-1
 - All stations outside of affected area have height errors which are biased in the opposite sense of the affected stations

Station

Eight stations in vicinity of SAA were down-weighted in a test orbit solution

Orbit was compared with nominal orbit which used all stations at same weight

CSR (SLR/I	DORIS - Downweig	ght DORIS stations	s in SAA region)						
	Crossover (CSR)		Crossover (SAA Downweight)		Radial Diff		Х	Y	Z
Cycle	Mean (mm)	RMS (mm)	Mean (mm)	RMS (mm)	RMS (mm)	Mean (mm)	Mean (mm)	Mean (mm)	Mean (mm)
8	5	62.5	6	62.7	1	0	0	0	1
9	2	59.7	4	59.8	2	0	0	0	0
10	-6	62.5	-3	62.3	2	0	0	0	0
11	-11	63.1	-7	62.5	2	0	0	0	0
12	-9	56.5	-6	56.1	2	0	0	0	-2
13	-3	62.4	2	62.6	4	0	1	0	-1
14	-7	59.8	-6	59.7	2	0	0	0	-1
15	-4	58.0	-1	57.8	2	0	0	0	-2
16	-7	62.0	-5	61.9	2	0	0	0	-1
17	4	60.4	7	60.8	3	0	0	0	-3
18	-5	59.2	-2	58.9	4	0	0	0	-2
19	7	61.9	10	62.3	3	0	0	0	-3
20	8	61.4	10	61.5	4	0	0	0	-5
Mean	-2	60.7	1	60.7	3	0	0	0	-1

Effect on orbits was insignificant, even for the later cycles where the SAA effect is worse

However, these results may only apply to longer arcs using a dynamic approach

Is Tighter Edit Criteria Beneficial?

Marne-la-Vallee, France

February 20-21, 2003

IDS Analysis Workshop

East component

These station position time series from DORIS on T/P for CACB suggest either a short-duration local deformation or an anomaly similar to Jason-1 which took about 1 year to settle down

Jason-1 is more extreme, however, and seems to be increasing

North component

Vertical component

2002

Inclusions of DORIS data has dramatic improvement in temporal gravity estimates

NTERNATIONAL DORIS

SERVICE

Contribution of DORIS to the Study of Temporal Gravity Variations (2)

(all units 10⁻¹⁰)

- MOE orbits for Jason-1 considerably better than for T/P
- Comparison of various Jason-1 orbits demonstrated good consistency
 - RMS difference relative to nominal CSR orbit rarely exceeded 2 cm, showing that the SLR/DORIS combination is still an accurate and robust tracking system
 - Centering differences generally less than 1 cm
- Anomalous behavior of DORIS data from Jason-1 in and around the SAA is a significant problem, which seems to be getting worse
 - Effect on POD still seems to be minor (for long-arc dynamics-based solutions)
 - May not be true for very short arcs or 'reduced-dynamic' approaches
 - Concern: can the majority of the data be 'salvaged' for geodetic applications?
 - Is estimating a frequency drift the correct solution?
- DORIS tracking from SPOT-2 and T/P significantly help constrain temporal gravity estimates; updated results in progress
 - Long time series from other DORIS satellites should also be beneficial