

Recent POD-related activities at DGFI-TUM

Julian Zeitlhöfler, Mathis Bloßfeld, Sergei Rudenko

Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM)

IDS AWG Meeting 2024 Online, 04.06.2024

Contents

- Recent software developments
- TOPEX/Poseidon attitude comparison
- Interpolation of altimetry satellite orbits
- Tests of Earth's gravity field models

Recent software developments

- Refinement of tropospheric modelling ongoing in DOGS-OC
- "Old modelling":
 - Zenith delay according to averaged global mean model by Collins (1999),
 - Mapping functions (dry, wet) by Niell.
- "New modelling":
 - o A priori zenith wet delay (dry) according to Saastamoinen, (dry, wet) VMF3-based mapping functions,
 - o A priori gradients in NS and EW direction equal to zero, (dry, wet) mapping functions based on Chen-Herring,
 - Tropospheric corrections are estimable; iterative improvement of parameters.
- Example: Jason-3 arc, tropospheric corrections of Toulouse (TLSB)

Recent software developments

- Refinement of tropospheric modelling ongoing in DOGS-OC
- "Old modelling":
 - Zenith delay according to averaged global mean model by Collins (1999),
 - Mapping functions (dry, wet) by Niell.
- "New modelling":
 - o A priori zenith wet delay (dry) according to Saastamoinen, (dry, wet) VMF3-based mapping functions,
 - o A priori gradients in NS and EW direction equal to zero, (dry, wet) mapping functions based on Chen-Herring,
 - Tropospheric corrections are estimable; iterative improvement of parameters.
- Example: Jason-3 arc, tropospheric corrections of Toulouse (TLSB)
 - o Elevation cut-off of 10 degrees applied
 - $\circ~$ Mean of differences between "old" and "new" modelling: ~ 17 cm
 - Further improvement expected when parameters corrected!

TOPEX/Poseidon attitude

- Accurate attitude realisation for the precise orbit determination (POD) of TOPEX/Poseidon (T/P) is quite challenging
- Two algorithms were developed by Perrygo (1987), one for the orientation of the spacecraft bus and one for the orientation
 of the solar array
- Overview of the formulae for the determination of the nominal yaw angle (Zeitlhöfler et al., 2024a):

Table 1

Sequence of modes and events in the yaw steering strategy of the T/P spacecraft. The sinusoidal and fixed yaw modes are connected by yaw ramp transition events, and the fixed yaw mode is interrupted by a yaw flip event. β'_0 is approximately 15° in the first mission years and 30° in later years. The exact values are listed in the T/P nominal attitude file. All values in the table are in degrees. The model is based on Casotto et al. (1994) except fixed yaw in regions of $|\beta'| > 80^\circ$ (cf. Section 4).

Description	Nominal yaw ψ_N	β' region			v region
		Active	Start	Condition	
Fixed yaw (flying forward)	0	$0 < eta' < +eta_0'$			
Yaw ramp up	$+\beta'\sin^2 v$		$eta'pprox+eta_0'$	$\dot{\beta'} > 0$	$0 \leqslant v \leqslant 90$
Sinusoidal yaw	$+90 - (90 - \beta') \sin v$	$+\beta'_0 < \beta'$			
Yaw ramp down	$+\beta'\sin^2 v$		$eta'pprox+eta_0'$	$\dot{eta'} < 0$	$90 \leq v \leq 180$
Fixed yaw (flying forward)	0	$0 < eta' < +eta_0'$			
Yaw flip	$-90(1 + \sin v)$	Ū	eta'pprox 0	$\dot{\beta'} < 0$	$90 \leq v \leq 270$
Fixed yaw (flying backward)	-180	$-eta_0'$			
Yaw ramp up	$-\beta'\sin^2 v - 180$		$eta'pprox -eta_0'$	$\dot{eta'} < 0$	$180 \leq v \leq 270$
Sinusoidal yaw	$-90 + (90 + \beta') \sin v$	$eta' < -eta'_0$	Ū		
Yaw ramp down	$-\beta'\sin^2 v - 180$		$eta'pprox -eta_0'$	$\dot{\beta'} > 0$	$270 \leq v \leq 360$
Fixed yaw (flying backward)	-180	$-eta_0'$			
Yaw flip	$-90(1 - \sin v)$		eta'pprox 0	$\dot{\beta'} > 0$	$90 \leq v \leq 270$
Fixed yaw (flying forward)	0	$0 < eta' < +eta_0'$			

TOPEX/Poseidon attitude

- No continuous supply of attitude quaternions for the T/P mission
- Attitude quaternions at some periods of so-called off-nominal attitude behaviour are available (Zelensky et al., 2024)
 => Allows the validation and quality assessment of the nominal model
- Accurate attitude is prerequisite for high-quality altimetry products

ЛЛ

TOPEX/Poseidon attitude

- Comparison of attitude angles at nine intervals
 - Spacecraft roll, pitch, and yaw angles
 - Solar array pitch angle (SAPA)
- Angular differences depending on the mode
 - Roll: largest differences in sinusoidal mode (up to 0.17°)
 - Pitch: largest differences in fixed mode (up to 0.31°)
 - Yaw: differences up to 0.05° on average
 - SAPA: constant offset (approx. -0.19°)
- In general, good agreement between the nominal attitude model and the quaternion data.
- Mis-modelling of the pitch orientation by 0.31° introduces an positional changes of the altimeter phase centre of 7 mm in the radial direction.

Zeitlhöfler et al. (2024a)

Orbit interpolation

- Orbit comparisons with internal and external orbit solutions are very important for orbit validation and quality assessment
- However, the orbits to be compared might be provided in different time systems (e.g., UTC, TAI, GPS) and at different time instants

=> Interpolation of one orbit solution is required

- Most orbit solutions of altimetry satellites are exchanged via the SP3 format (Hilla, 2016) in the terrestrial reference frame (TRF)
- However, the comparison of satellite positions is conducted in the orbital system (radial, transverse, normal, RTN)
 => Coordinate transformation is required
- We performed several experiments to assess the accuracy of different polynomial interpolation methods (Lagrange, Newton, Hermite) (Zeitlhöfler et al., 2024b)

Target: well below millimetre interpolation accuracy

ТШ

Orbit interpolation

Experiment

- #1: Interpolation accuracy using TRF coordinates
- #2: Transformation accuracy from TRF to RTN
- #3: Interpolation accuracy inside the moving window
- #4: Spectral analysis of transformation error
- #5: Suggestion for improved SP3 format

Moving window approach:

Orbit interpolation

Interpolation accuracy:

- Best results for the Hermite interpolation method
- Increasing the interpolation degree benefits the interpolation accuracy
- Minimum interpolation error of 0.5 mm in all cases (average value)

Statistical values (average	(avg) and standard	deviation (std)) of t	the interpolation error [mm]:
-----------------------------	--------------------	-----------------------	-------------------------------

	Degree		Temporal step size of the reference and non-reference solutions					
		≤ 30) sec	60 sec		120 sec		
		avg	std	avg	std	avg	std	
wton	5	0.61	0.23	1.18	0.36	66.62	3.66	
	6	0.62	0.24	0.62	0.23	3.88	0.96	
	7	0.62	0.24	0.61	0.23	0.83	0.40	
Ne	8	0.63	0.24	0.62	0.23	0.76	0.35	
	9+	0.62	0.24	0.62	0.23	0.72	0.31	_
nite	5	0.57	0.21	0.57	0.21	2.72	0.39	
	7+	0.56	0.21	0.56	0.20	0.57	0.21	
len	7 + a	0.06	0.02	0.06	0.02	0.07	0.03	
Ξ	$7 + {}^{b}$	0.01	0.01	0.03	0.01	0.05	0.02	

^aSeven instead of six (default) decimal digits in the SP3 file; ^bEight instead of six (default) decimal digits in the SP3 file

Orbit interpolation

ТШ

Transformation effects:

- Redistribution of orbit error into certain components at transformation
- The choice of sufficient interpolation settings prevents this effect

Newton interpolation, degree 5, step size 120 seconds (left) and 30 seconds (right):

ТШ

Tests of some recent Earth's time-variable gravity field models for POD of Jason-3 (2016-2023): a test setup

Seven Earth's time-variable gravity field models are used.

Observation type used: Satellite Laser Ranging (SLR).

Dynamical models are according to Rudenko et al. (2023) for the DGFI-TUM DSO1 orbits.

Terrestrial Reference Frame realization used: SLRF2020

Impact on the following orbital parameters is investigated:

- RMS and mean values of SLR observations residuals,
- scale factors of the solar radiation pressure, Earth's albedo and infrared radiation and atmospheric drag,
- empirical accelerations in the along-track and crosstrack directions.

Model name	Model name abbreviation	Data time span	Max time- variable degree
EIGEN-6S (Foerste et al., 2011)	EIGEN-6S	1985- 2009	50
EIGEN-6S2.extended.v2 (Rudenko et al., 2014)	EIGEN-6S2ext2	1985- 2014	50
EIGEN-GRGS.RL03-v2.MEAN- FIELD.mean_slope_extrapolation (Lemoine et al., 2014)	CNES_RL03MF	1985- 2014	80
ITSG-GRACE2018S (Mayer-Gürr et al., 2018)	ITSG- GRACE2018S	2002- 2017	200
GOCO6S (Kvas et al., 2021)	GOCO6S	2002- 2017	200
EIGEN-GRGS.RL04.MEAN- FIELD (Lemoine et al., 2019)	CNES_RL04MF	1985- 2016.5	90
CNES_GRGS.RL05MF_combine d_GRACE_SLR_DORIS (Lemoine et al., 2023)	CNES_RL05MF	1985- 2022	90

Tests of some recent Earth's time-variable gravity field models for POD of Jason-3 (2016-2023): mean (left) and standard deviation (right) of orbital parameters

The CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS model performs best among the models tested, since the timevariable terms of this model were determined over the longest time span (1985 – 2022) among the models used.

More results will be given in Rudenko et al. (in preparation).

Conclusions

- Attitude realisation of TOPEX/Poseidon for POD primarily by the use of the nominal attitude model
- Very limited quaternion data (spacecraft body and solar array) allows the validation of the nominal model
- Both approaches are similar with angular differences up to approximately 0.31°
- Interpolation is a necessary tool for orbit comparisons (of mainly external solutions)
- The Hermite interpolation method of degrees 7-11 provides best results and smallest interpolation errors
- The current SP3 format limits the interpolation accuracy to ~0.6 mm => recommendation for an update of the format by
 providing additional decimal digits for the satellite position and velocity
- The CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS time-variable gravity model performs best for POD of Jason-3 since it is based on input data between 1985 and 2022

References

- Förste C. et al. (2011) EIGEN-6 A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse, Geophysical Research Abstracts, vol. 13, EGU2011-3242-2.
- Hilla S. (2016) The Extended Standard Product 3 Orbit Format (SP3-d), National Geodetic Survey, National Ocean Service, NOAA, Silver Spring, MD 20910, USA, <u>https://epncb.eu/ftp/data/format/sp3d.pdf</u>.
- Kvas A. et al. (2021) GOCO06s a satellite-only global gravity field model. Earth System Science Data, 13(1), 99-118, DOI: 10.5194/essd-13-99-2021.
- Lemoine J.-M. et al. (2014) EIGEN-GRGS.RL03.MEAN-FIELD: new mean gravity field model for altimetric satellite orbit computation, OSTST, Lake Constance, Germany, 27-31.10.2014.
- Lemoine J.-M. et al. (2019) EIGEN-GRGS.RL04.MEAN-FIELD Mean Earth gravity field model with a time-variable part from CNES/GRGS RL04, IDS Workshop, 24-29.09.2018, Ponta Delgada, Portugal.
- Lemoine J.-M. et al. (2023) New mean gravity field model CNES_GRGS.RL05MF_combined_GRACE_SLR_DORIS, IDS AWG meeting, online, 18.04.2023.
- Mayer-Gürr T. et al. (2018) ITSG-Grace2018 monthly, daily and static gravity field solutions from GRACE. GFZ Data Services, DOI: 10.5880/ICGEM.2018.003.
- Perrygo C. (1987) TOPEX Satellite Yaw Maneuvers. Fairchild Space Company, Germantown, Maryland.
- Rudenko S. et al. (2014) Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Advances in Space Research 54(1): 92-118, DOI: 10.1016/j.asr.2014.03.010.

References

- Rudenko S. et al. (2023) Radial orbit errors of contemporary altimetry satellite orbits. Surveys in Geophysics, 44, 705-737, DOI: 10.1007/s10712-022-09758-5.
- Rudenko et al. (in preparation) Impact of new Earth's time-variable gravity field models on orbits of altimetry satellites.
- Zeitlhöfler J., Bloßfeld M., Lemoine F. G., Seitz F. (2024a) Quality assessment of the nominal attitude model of TOPEX/Poseidon using quaternion data. Adv. in Space Res., 73(12), 5757-5768, DOI: 10.1016/j.asr.2024.03.031.
- Zeitlhöfler J., Alkahal R., Rudenko S., Bloßfeld M., Seitz F. (2024b) Performance assessment of interpolation methods for orbits of altimetry satellites. Submitted to Earth, Planets, and Space.
- Zelensky N. P., Lemoine F. G., Zeitlhöfler J., Bloßfeld M., & Yang X. (2024) TOPEX/Poseidon spacecraft body and solar array quaternions (Version 01A) [Data set]. Zenodo. DOI: 10.5281/zenodo.10795818