



# AWG2024: Status of DORIS Processing at GSFC

## F.G. Lemoine<sup>1</sup>, D.S. Chinn<sup>2</sup>, N.P. Zelensky<sup>3</sup>, X. Yang<sup>2</sup>

(1) NASA GSFC, Greenbelt, Maryland, USA
(2) KBR Inc., Greenbelt, Maryland, USA
(3) ESSIC, University of Maryland, College Park, Maryland, U.S.A.

Virtual IDS Analysis Working Group Meeting

Cyberspace

June 4, 2024















# **GSC Accomplishments since the IDSAWG 2023 (***Saint Mandé, France*)



| 1. | Delivery of two SINEX series for ITRF2020 extension:<br>wd55 (based on grgs_rl05 gravity model), and wd56 (including Sentinel-6A). |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Implementation the new DPOD2020 a priori & SLRF2020. (dpod2020_015)                                                                |
| 3. | Test DTM2020 & MSIS2 atmosphere models.                                                                                            |
| 4. | Test adding of nutation corrections to operational processing.                                                                     |
| 5. | Process RINEX data for Cryosat-2, Saral (2016-2024) using new standards.                                                           |
| 6. | Operational change:<br>Switch processing to Linux cluster after RAID disk failure on older server.                                 |
|    |                                                                                                                                    |

#### **Other recent changes:**

- (1) Use Conrad et al. (2023) Macromodel for Sentinel-6A
- (2) Change to cd/hr (with time-correlated constraint) for 800 km satellites for 2021-2024. (Many more shorter arcs).



# Summary of Recent SINEX Submissions Post ITRF2020



| Series  | Description                                                                                                                                                                                                    | Comment                                                                                               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| gscwd52 | gscwd51 + Sentinel-3B starting 180610                                                                                                                                                                          | Deliveries Started 2021-10-18                                                                         |
| gscwd53 | gscwd52 + downweight SAA stations on HY2A by 3X;<br>Remove Arequipa, Kourou, Cacheoira, Santiago, San Juan<br>from HY-2A normal equation before combination.<br>(Recommended after last IDS WS 2022)           | Deliveries started 2023-04-25                                                                         |
| gscwd54 | gscwd53 + replace GOCO05s/SLR+DORIS 4x4 solutions<br>with CNES_GRGS.RL05MF_COMBINED_GRACE_SLR_DORIS<br>gravity model, and resubmit SINEX files from 20160101<br>for the preparation of the ITRF2020 extension. | Deliveries started 2023-11-08.<br>(Delivered from 2016-DOY003 to<br>2023-DOY365) by February 4, 2024. |
| gscwd55 | gscwd54 + Sentinel-6A                                                                                                                                                                                          | Delivered 2021-2023<br>on 2024-0306 to 2024-0319.                                                     |
| gscwd56 | gscwd55 + dpod2020 as a priori; Jason-3 downweighted w.r.t. Sentinel-6A.                                                                                                                                       | Delivered 2021-2023 on 2024-0306                                                                      |
| gscwd57 | gscwd56 + use MSIS2 atmosphere density model.                                                                                                                                                                  | Internal series for now                                                                               |
| gscwd58 | gscwd57 + apply nutation corrections.                                                                                                                                                                          | Internal series for now                                                                               |



## Candidate new atmosphere density models for GEODYN



#### **MSIS2.0**

#### Earth and Space Science

#### RESEARCH ARTICLE 10.1029/2020EA001321

#### Key Points:

- A major, reformulated upgrade to NRLMSISE-00 is presented using extensive new data sets from the ground to ~100 km altitude
- Vertical structure of the atmosphere is now self-consistently coupled; O density now extends down to 50 km
   New model is warmer in upper troposphere, cooler in stratosphere and mesosphere; thermospheric N<sub>2</sub> and O densities are lower

#### Supporting Information:

- Supporting Information S1
  Data Set 1
  Data Set 2
  Data Set 3
  Data Set 4
  Data Set 5
  Data Set 6
- Data Set 7
- Data Set 8

Correspondence to:

#### NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities

J. T. Emmert<sup>1</sup> <sup>(i)</sup>, D. P. Drob<sup>1</sup> <sup>(i)</sup>, J. M. Picone<sup>2</sup> <sup>(i)</sup>, D. E. Siskind<sup>1</sup> <sup>(i)</sup>, M. Jones Jr.<sup>1</sup> <sup>(i)</sup>, M. G. Mlynczak<sup>3</sup> <sup>(i)</sup>, P. F. Bernath<sup>4,5</sup> <sup>(i)</sup>, X. Chu<sup>6,7</sup> <sup>(i)</sup>, E. Doornbos<sup>8</sup> <sup>(i)</sup>, B. Funke<sup>9</sup> <sup>(i)</sup>, L. P. Goncharenko<sup>10</sup> <sup>(i)</sup>, M. E. Hervig<sup>11</sup> <sup>(i)</sup>, M. J. Schwartz<sup>12</sup> <sup>(i)</sup>, P. E. Sheese<sup>13</sup>, F. Vargas<sup>14</sup> <sup>(i)</sup>, B. P. Williams<sup>15</sup> <sup>(i)</sup>, and T. Yuan<sup>16</sup> <sup>(i)</sup>

<sup>1</sup>Space Science Division, U.S. Naval Research Laboratory, Washington, DC, USA, <sup>2</sup>Voluntary Emeritus Program, U.S. Naval Research Laboratory, Washington, DC, USA, <sup>3</sup>Science Directorate, NASA Langley Research Center, Hampton, VA, USA, <sup>4</sup>Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA, <sup>5</sup>Department of Chemistry of Waterloo, Ontario, Canada, <sup>6</sup>Cooperative Institute of Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, <sup>7</sup>Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA, <sup>7</sup>Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA, <sup>7</sup>Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA, <sup>8</sup>Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands, <sup>9</sup>Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain, <sup>10</sup>Haystack Observatory, Massachusetts Institute of Technology, Westford, MA, USA, <sup>11</sup>GATS, Driggs, ID, USA, <sup>12</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, <sup>13</sup>Department of Physics, University of Toronto, Toronto, Ontario, Canada, <sup>14</sup>Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA, <sup>13</sup>GATS, Boulder Division, Boulder, CO, USA, <sup>16</sup>Center for Atmospheric and Space Science, Utah State University, Logan, UT, USA

Abstract NRLMSIS\* 2.0 is an empirical atmospheric model that extends from the ground to the exobase and describes the average observed behavior of temperature, eight species densities, and mass density via a parametric analytic formulation. The model inputs are location, day of year, time of

#### New semi-empirical Density models.

DTM2020

J. Space Weather Space Clim. 2021, **11**, 47 © S. Bruinsma & C. Boniface, Published by EDP Sciences 2021 https://doi.org/10.1051/swsc/2021032



#### **OPEN ∂** ACCESS

#### The operational and research DTM-2020 thermosphere models

Sean Bruinsma<sup>\*</sup> and Claude Boniface

**RESEARCH ARTICLE** 

OMP/GET-CNES, Space Geodesy Office, 14 avenue E. Belin, 31401 Toulouse cedex 4, France

Received 11 June 2021 / Accepted 23 August 2021

**Abstract**-Aims: The semi-empirical Drag Temperature Models (DTM) predict the Earth's thermosphere's temperature, density, and composition, especially for orbit computation purposes. Two new models were developed in the framework of the H2020 Space Weather Atmosphere Models and Indices (SWAMI) project. The operational model is driven by the trusted and established F10.7 and Kp indices for solar and geomagnetic activity. The so-called research model is more accurate, but it uses the indices F30 and the hearthy they which are not use accurate quantification.

- 1. <u>DTM2020:</u> (*Drag Temperature Model 2020*). Model backbone based on GOCE, CHAMP, and Swarm A densities, processed by TU Delft, and Stella processed at CNES/GRGS.
- MSIS 2.0 (Mass Spectrometer and Incoherent Scatter): (Emmert et a., 2021). "MSIS2.0 assimilates extensive new measurements of temperature in the mesosphere, stratosphere & troposphere and atomic oxygen and atomic hydrogen measurements in the mesosphere ..." Successor to previous MSIS models. Bulk of measurements upon which model based are < 110 km, + orbit data at 400-575 km (Table 1, Emmert et al., 2021)</li>



# Evaluation of MSIS2: Orbit differences vs. prior POD model (MSIS86) (I) (for arcs in 2023)





Radial: 0.43 cm; Cross-track: 0.31 cm; Along-track: 1.49 cm.



Along-track: 1.05 cm.



Sentinel-6A: <u>Avg RMS</u>: Radial: 0.30 mm; Cross-track: 0.40 mm; Along-track: 1.62 mm.



# Evaluation of MSIS2: Orbit differences vs. prior POD model (MSIS86) (II) (for 231105 arc)







# **OPR Acceleration amplitudes –** Lower altitude DORIS satellites (1)



## Cryosat-2 (2021—2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1134 | 2.293                                   | 2.157                                   |
| wd56 dpod2020 | 1126 | 2.284                                   | 2.082                                   |
| wd57 MSIS2    | 1126 | 2.524                                   | 2.090                                   |
| wd58 nutate   | 1126 | 2.524                                   | 2.090                                   |

## Sentinel-3A (2021-2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1148 | 0.543                                   | 1.328                                   |
| wd56 dpod2020 | 1145 | 0.540                                   | 1.274                                   |
| wd57 MSIS2    | 1145 | 1.227                                   | 1.262                                   |
| wd58 nutate   | 1145 | 1.227                                   | 1.262                                   |

## Saral (2021—2023)

| Series        | Nacc | Along-<br>track<br>(nm/s²) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|----------------------------|-----------------------------------------|
| wd55 dpod2014 | 1085 | 2.100                      | 0.966                                   |
| wd56 dpod2020 | 1085 | 2.103                      | 0.898                                   |
| wd57 MSIS2    | 1085 | 2.244                      | 0.890                                   |
| wd58 nutate   | 1085 | 2.244                      | 0.893                                   |

#### Sentinel-3B (2021-2023)

| Series        | Nacc | Along-<br>track<br>(nm/s²) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|----------------------------|-----------------------------------------|
| wd55 dpod2014 | 1148 | 0.939                      | 1.420                                   |
| wd56 dpod2020 | 1145 | 0.944                      | 1.357                                   |
| wd57 MSIS2    | 1145 | 1.681                      | 1.345                                   |
| wd58 nutate   | 1145 | 1.681                      | 1.344                                   |

# Impact of MSIS2 on OPR's (along-track) - (I)



## Cryosat-2 (2021—2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1134 | 2.293                                   | 2.157                                   |
| wd56 dpod2020 | 1126 | 2.284                                   | 2.082                                   |
| wd57 MSIS2    | 1126 | 2.524                                   | 2.090                                   |
| wd58 nutate   | 1126 | 2.524                                   | 2.090                                   |

#### Sentinel-3A (2021—2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1148 | 0.543                                   | 1.328                                   |
| wd56 dpod2020 | 1145 | 0.540                                   | 1.274                                   |
| wd57 MSIS2    | 1145 | 1.227                                   | 1.262                                   |
| wd58 nutate   | 1145 | 1.227                                   | 1.262                                   |

#### Saral (2021—2023)

| Series        | Nacc | Along-<br>track<br>(nm/s²) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|----------------------------|-----------------------------------------|
| wd55 dpod2014 | 1085 | 2.100                      | 0.966                                   |
| wd56 dpod2020 | 1085 | 2.103                      | 0.898                                   |
| wd57 MSIS2    | 1085 | 2.244                      | 0.890                                   |
| wd58 nutate   | 1085 | 2.244                      | 0.893                                   |

#### Sentinel-3B (2021-2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1148 | 0.939                                   | 1.420                                   |
| wd56 dpod2020 | 1145 | 0.944                                   | 1.357                                   |
| wd57 MSIS2    | 1145 | 1.681                                   | 1.345                                   |
| wd58 nutate   | 1145 | 1.681                                   | 1.344                                   |



# Impact of MSIS2 on OPR's (along-track) - (II)



## Sentinel-3A: Along-track OPR amplitudes: *a priori vs. MSIS2*



## Saral: Along-track OPR amplitudes: *a priori vs. MSIS2*





## **OPR Acceleration amplitudes – S3A vs. S3B**



#### Sentinel-3A (2021—2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1148 | 0.543                                   | 1.328                                   |
| wd56 dpod2020 | 1145 | 0.540                                   | 1.274                                   |
| wd57 MSIS2    | 1145 | 1.227                                   | 1.262                                   |
| wd58 nutate   | 1145 | 1.227                                   | 1.262                                   |

#### Sentinel-3B (2021-2023)

| Series        | Nacc | Along-<br>track<br>(nm/s <sup>2</sup> ) | Cross-<br>track<br>(nm/s <sup>2</sup> ) |
|---------------|------|-----------------------------------------|-----------------------------------------|
| wd55 dpod2014 | 1148 | 0.939                                   | 1.420                                   |
| wd56 dpod2020 | 1145 | 0.944                                   | 1.357                                   |
| wd57 MSIS2    | 1145 | 1.681                                   | 1.345                                   |
| wd58 nutate   | 1145 | 1.681                                   | 1.344                                   |



# Test of Nutation "Corrections" (I)



1. Nutation corrections to the IAU2000 nutation model are supplied by the IERS, and part of the data distributed by the IERS. In the space geodesy era, they would be determined by VLBI. Parameters are "dX" and "dY".



https://datacenter.iers.org/data/html/eopc04\_14\_IAU2000.62-now.html

2. Nutation corrections to the IAU2000 nutation model are supplied by the IERS, and part of the data distributed by the IERS. In the space geodesy era, they would be determined by VLBI. Parameters are "dX" and "dY". 3. Amplitude is up to ~25<u>5  $\mu$ as</u> with the principal effect at the Chandler wobble period (~435 days). 4.<u>Hypothesis</u>: Not including these corrections mean mapping from inertial coordinates to body-fixed coordinates will be incorrect (incorrect positioning of spacecraft and stations) but may be compensated by EOP estatimation – and the error would enter the bias and/or periodic term in differences with IERS CO4.



# Test of Nutation "Corrections" (II): Jason-3 orbit differences







# Test of Nutation "Corrections" (III): Jason-3 orbit differences: spectral analysis









# Test of Nutation "Corrections" (IV): Average Jason-3 orbit differences (mm): (cycles 1-226; 160317–220408)

| Orbits<br>differenced | Radial | Cross-track | Along-tack | Total 3-D |
|-----------------------|--------|-------------|------------|-----------|
| nominal-nutate        | 0.03   | 9.74        | 6.12       | 11.51     |
| jpl22a-nominal        | 5.41   | 17.85       | 22.97      | 29.79     |
| jpl22a-nutate         | 5.41   | 19.46       | 25.48      | 32.78     |
| poef-nominal          | 5.89   | 18.98       | 24.02      | 31.52     |
| poef-nutate           | 5.89   | 20.85       | 26.40      | 34.52     |
| jpl22a-poef           | 3.97   | 8.93        | 10.17      | 14.38     |



# **RMS of fit by satellite –** Lower altitude DORIS satellites (1)



## Cryosat-2 (2021-2023)

| Series        | Narcs | DORIS<br>nobs | DORIS<br>WRMS<br>(mm/s) | SLR<br>nobs | SLR<br>WRMS<br>(cm) | Saral (2021—2023) |       |        |                         |             |                     |
|---------------|-------|---------------|-------------------------|-------------|---------------------|-------------------|-------|--------|-------------------------|-------------|---------------------|
| wd55 dpod2014 | 218   | 53622         | 0.2669                  | 776         | 0.763               |                   | •     |        | ,                       |             |                     |
| wd56 dpod2020 | 218   | 53296         | 0.2666                  | 777         | 0.714               | Series            | Narcs | DORIS  | DORIS<br>WRMS<br>(mm/s) | SLR<br>nobs | SLR<br>WRMS<br>(cm) |
| wd57 MSIS2    | 218   | 53293         | 0.2666                  | 777         | 0.715               |                   |       | 110.05 |                         |             |                     |
| wd58 nutate   | 218   | 53293         | 0.2666                  | 777         | 0.715               | wd55 dpod2014     | 161   | 78714  | 0.2522                  | 853         | 0.719               |
|               | -     |               |                         |             |                     |                   |       |        |                         |             |                     |

#### Sentinel-3A (2021–2023)

| Series        | Narcs | DORIS<br>nobs | DORIS<br>WRMS<br>(mm/s) | SLR<br>nobs | SLR<br>WRMS<br>(cm) |
|---------------|-------|---------------|-------------------------|-------------|---------------------|
| wd55 dpod2014 | 203   | 69745         | 0.2619                  | 785         | 0.720               |
| wd56 dpod2020 | 218   | 69875         | 0.2614                  | 786         | 0.695               |
| wd57 MSIS2    | 218   | 69875         | 0.2614                  | 786         | 0.698               |
| wd58 nutate   | 218   | 69875         | 0.2614                  | 786         | 0.698               |

| Jenes         | Naics | nobs  | WRMS<br>(mm/s) | nobs | WRMS<br>(cm) |
|---------------|-------|-------|----------------|------|--------------|
| wd55 dpod2014 | 161   | 78714 | 0.2522         | 853  | 0.719        |
| wd56 dpod2020 | 161   | 79191 | 0.2513         | 866  | 0.692        |
| wd57 MSIS2    | 161   | 79187 | <b>0.25</b> 12 | 866  | 0.700        |
| wd58 nutate   | 161   | 79187 | 0.2512         | 866  | 0.698        |

DORIS RMS of fit is modulated by elevation-dependent weighting, so we report the WRMS.



# RMS of fit by satellite – Higher altitude DORIS satellites (2)



#### Jason-3 (2021—2023)

| Series        | Narcs | DORIS<br>nobs | DORIS<br>WRMS<br>(mm/s) | SLR<br>nobs | SLR<br>WRMS<br>(cm) | Avg. Cr | Cr,<br>Std Dev. |
|---------------|-------|---------------|-------------------------|-------------|---------------------|---------|-----------------|
| wd55 dpod2014 | 180   | 129093        | 0.2533                  | 2052        | 0.716               | 0.9804  | 0.00923         |
| wd56 dpod2020 | 180   | 127630        | 0.2526                  | 2103        | 0.716               | 0.9804  | 0.00921         |
| wd57 MSIS2    | 180   | 127628        | 0.2526                  | 2103        | 0.719               | 0.9816  | 0.00888         |
| wd58 nutate   | 180   | 127628        | 0.2526                  | 2103        | 0.719               | 0.9816  | 0.00888         |

#### Sentinel-6A (2021-2023)

| Series        | Narcs | DORIS<br>nobs | DORIS<br>WRMS<br>(mm/s) | SLR<br>nobs | SLR<br>WRMS<br>(cm) | Avg. Cr | Cr,<br>Std Dev. |
|---------------|-------|---------------|-------------------------|-------------|---------------------|---------|-----------------|
| wd55 dpod2014 | 180   | 135581        | 0.2502                  | 1819        | 0.718               | 1.0004  | 0.0126          |
| wd56 dpod2020 | 180   | 124457        | 0.2490                  | 1897        | 0.676               | 1.0003  | 0.0134          |
| wd57 MSIS2    | 180   | 124457        | 0.2490                  | 1897        | 0.674               | 1.0015  | 0.0128          |
| wd58 nutate   | 180   | 124457        | 0.2490                  | 1897        | 0.674               | 1.0014  | 0.0127          |

DORIS RMS of fit is modulated by elevation-dependent weighting, so we report the WRMS.



# Results with wd56 (*dpod2020* as a priori)







## **Results with wd57**



## (Test with MSIS2, 2023-only)





# Summary of POD Results: RMS of fit for gscwd58



(\*preliminary results)

| Satellite                                                                                              | First Arc | Last Arc | No of<br>Arcs | Avg. No<br>SLR obs | Avg. No<br>DORIS obs | Avg. SLR<br>fit (cm) | Avg DORIS fit *<br>(WRMS, mm/s) |
|--------------------------------------------------------------------------------------------------------|-----------|----------|---------------|--------------------|----------------------|----------------------|---------------------------------|
| Cryosat-2 (V2)                                                                                         | 210103    | 240325   | 235           | 772                | 53,174               | 0.728                | 0.3806                          |
| Cryosat-2 (Rinex)                                                                                      | 210103    | 240325   | 235           | 773                | 54,770               | 0.735                | 0.3850                          |
| Cryosat-2 (Rinex)                                                                                      | 160103    | 201227   | 313           | 1036               | 66,422               | 0.697                | 0.3756                          |
| Jason-3                                                                                                | 160223    | 240412   | 473           | 2532               | 133,144              | 0.683                | 0.3604                          |
| Saral (V2)                                                                                             | 210103    | 240331   | 174           | 866                | 79,281               | 0.700                | 0.3590                          |
| Saral (Rinex)                                                                                          | 210103    | 240331   | 174           | 869                | 81,270               | 0.716                | 0.3607                          |
| Saral (Rinex)                                                                                          | 160103    | 201227   | 266           | 1150               | 85,609               | 0.733                | 0.3571                          |
| Sentinel-3A                                                                                            | 160302    | 240403   | 523           | 865                | 75,042               | 0.635                | 0.3709                          |
| Sentinel-3B                                                                                            | 180606    | 240407   | 391           | 793                | 71,378               | 0.659                | 0.3837                          |
| Sentinel-6A                                                                                            | 210103    | 240407   | 197           | 1914               | 123,253              | 0.687                | 0.3556                          |
| * All arcs use elevation-dependent weighting; For simplicity DORIS WRMS is rescaled by 1/0.7 to report |           |          |               |                    |                      |                      |                                 |

aggregate results by satellite.



# Summary of Recent SINEX Submissions Post ITRF2020



| Series  | Description                                                                                                                                                                                                    | Comment                                                                                               |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| gscwd52 | gscwd51 + Sentinel-3B starting 180610                                                                                                                                                                          | Deliveries Started 2021-10-18                                                                         |
| gscwd53 | gscwd52 + downweight SAA stations on HY2A by 3X;<br>Remove Arequipa, Kourou, Cacheoira, Santiago, San Juan<br>from HY-2A normal equation before combination.<br>(Recommended after last IDS WS 2022)           | Deliveries started 2023-04-25                                                                         |
| gscwd54 | gscwd53 + replace GOCO05s/SLR+DORIS 4x4 solutions<br>with CNES_GRGS.RL05MF_COMBINED_GRACE_SLR_DORIS<br>gravity model, and resubmit SINEX files from 20160101<br>for the preparation of the ITRF2020 extension. | Deliveries started 2023-11-08.<br>(Delivered from 2016-DOY003 to<br>2023-DOY365) by February 4, 2024. |
| gscwd55 | gscwd54 + Sentinel-6A                                                                                                                                                                                          | Delivered 2021-2023<br>on 2024-0306 to 2024-0319.                                                     |
| gscwd56 | gscwd55 + dpod2020 as a priori; Jason-3 downweighted<br>w.r.t. Sentinel-6A.                                                                                                                                    | Delivered 2021-2023 on 2024-0306                                                                      |
| gscwd57 | gscwd56 + use MSIS2 atmosphere density model.                                                                                                                                                                  | Internal series for now                                                                               |
| gscwd58 | gscwd57 + apply nutation corrections.                                                                                                                                                                          | Internal series for now                                                                               |





- For the GSC DORIS contribution to the ITRF2020-extension, we have submitted two contributions, wd54 and wd55. We have also submitted wd56 (based on dpod2020) to the IDS Data Centers.
- Our contribution for the series used in the IDS combination for the ITRF2020extension included:
- (a) downweighting of SAA stations in POD, and removal of 5 SAA stations in the HY-2A contribution to the combination.
  - (b) consistent use of the grgs-rl05 gravity model.
- (c.) Inclusion of Sentinel-6a (2021-2023) using the Conrad et al. (2023) micromodel.
- We are evaluating other improvements: inclusion of the MSIS2 atmosphere density model, and correct application of the nutation corrections.
- The next priority will be inclusion of newer satellites, and integration of their attitude model into GEODYN.
- Once computer resources become available, we will reprocess the older data with DPOD2020 and the new standards.